Loop-Erased Random Walks

Baining Zhang
Supervised by Prof Maximilian Nitzschner

May 13, 2025

Introduction

- Self-avoiding walks (SAW) are paths that do not visit the same vertex twice.
- Introduced by Lawler in 1979, the loop-erased random walk (LERW) is a model of self-avoiding walks.
- LERW = Markov chains + loop-erasure.

Markov Chains on Finite Sets

- Let $A, \partial A$ be disjoint finite vertex sets and denote $\overline{A} = A \cup \partial A$. We may also use $A, \partial A, \overline{A}$ to denote their complete graphs.
- A Markov chain S from x_0 to ∂A is given by the measure \mathbf{P}^{x_0} with transition probabilities $(p(x,y))_{x,y\in\overline{A}}$.
- It is stopped at ∂A by setting $p(x,y) = \delta_{xy}$ for $x,y \in \partial A$.
- Its path is given by $S[0, \tau_A] = [S_0, \dots, S_{\tau_A}]$, where $\tau_A = \inf\{j \geq 0 \; ; \; S_j \notin A\}$ is the exit time of A.
- Simple random walk: a Markov chain with transition probabilities $p(x, y) = 1/d_A(x)$, the degree of x in A.

Markov Chain as Measure on Path Space

- Given a directed edge $\vec{e} = [x, y]$, define weight $p(\vec{e}) = p(x, y)$.
- We can concatenate directed edges $\vec{e} = [x, y], \vec{f} = [y, z]$ to form a path $\vec{e} \oplus \vec{f} = [x, y, z]$.
- For a path $\omega = [x_0, \dots, x_n] = \vec{e}_1 \oplus \dots \oplus \vec{e}_n$, $p(\omega) = \prod_{i=1}^n p(\vec{e}_i)$.
- This induces a measure p on sets of paths, e.g. we can write $p(\mathcal{K}_A(x,y))$, where $\mathcal{K}_A(x,y)$ denotes the set of paths from x to y in A.
- Let $\omega = [x_0, \dots, x_n] \in \mathcal{K}_A(x_0, x_n)$. By the Markov property, we can write

$$\mathbf{P}^{x_0} \{ S[0,n] = \omega \} = \mathbf{P}^{x_0} \{ S_0 = x_0, \dots, S_n = x_n \} = p(\omega).$$

Let $W_A(x, y)$ denote the set of SAWs from x to y in A.

Definition (Loop-erasure)

We define a deterministic procedure called (chronological) loop-erasure

$$\mathsf{LE}:\omega\in\mathcal{K}_{\mathsf{A}}(\mathsf{x},\mathsf{y})\mapsto\eta\in\mathcal{W}_{\mathsf{A}}(\mathsf{x},\mathsf{y}).$$

It is given by the following:

- Let $\omega = [\omega_0, \dots, \omega_n] \in \mathcal{K}_A(x, y)$, $j_0 = \sup\{k ; \omega_k = \omega_0\}$, and $\eta_0 = \omega_0 = \omega_{j_0}$.
- ② If $j_i < n$, set $j_{i+1} = \sup\{k : \omega_k = \omega_{j_i+1}\}$, and $\eta_{j+1} = \omega_{j_i+1} (= \omega_{j_{i+1}})$. Recursively apply this procedure until $j_m = n$.

Definition (Loop-erasure)

- Let $\omega = [\omega_0, \dots, \omega_n] \in \mathcal{K}_A(x, y)$, $j_0 = \sup\{k ; \omega_k = \omega_0\}$, and $\eta_0 = \omega_0 = \omega_{j_0}$.
- ② If $j_i < n$, set $j_{i+1} = \sup\{k : \omega_k = \omega_{j_i+1}\}$, and $\eta_{j+1} = \omega_{j_i+1} (= \omega_{j_{i+1}})$. Recursively apply this procedure until $j_m = n$.

Definition (Loop-erasure)

- Let $\omega = [\omega_0, \dots, \omega_n] \in \mathcal{K}_A(x, y)$, $j_0 = \sup\{k ; \omega_k = \omega_0\}$, and $\eta_0 = \omega_0 = \omega_{j_0}$.
- ② If $j_i < n$, set $j_{i+1} = \sup\{k : \omega_k = \omega_{j_i+1}\}$, and $\eta_{j+1} = \omega_{j_i+1} (= \omega_{j_{i+1}})$. Recursively apply this procedure until $j_m = n$.

What is the probability that η is the loop-erasure of the path of a Markov chain. That is, what is $p(LE^{-1}(\eta))$?

Theorem

Let $\eta = [x_0, \dots, x_m, x_{m+1}]$, where $x_{m+1} \in \partial A$.

$$p(\mathsf{LE}^{-1}(\eta)) = p(\eta) \prod_{j=0}^m p(\mathcal{K}_{A_j}(x_j, x_j)), \text{ where } A_j = A \setminus \{x_0, \dots, x_{j-1}\}.$$

The product is a measure of all possible combinations of loops erased. We write

$$F_{\eta}(A) = \prod_{j=0}^{m} p(\mathcal{K}_{A_{j}}(x_{j}, x_{j})).$$

$$\omega = \ell_0 \oplus [x_0, x_1] \oplus \ell_1 \oplus [x_1, x_2] \oplus \ell_2 \oplus [x_2, x_3] \oplus \ell_3 \oplus [x_3, x_4]$$

Loop ℓ_0 at x_0

Loop-erasure η

Loop ℓ_1 at x_1

Loop ℓ_3 at x_3

Proof (sketch).

Given some path $\omega \in LE^{-1}(\eta)$, we have the unique decomposition

$$\omega = \ell_0 \oplus [x_0, x_1] \oplus \ell_1 \oplus [x_1, x_2] \oplus \cdots \oplus [x_{m-1}, x_m] \oplus \ell_m \oplus [x_m, x_{m+1}],$$

where $\ell_j \in \mathcal{K}_{A_j}(x_j, x_j)$. From this, we obtain $p(\omega) = p(\eta)p(\ell_0)\dots p(\ell_m)$. Summing over all possible choices of the loops $\ell_0, \dots \ell_m$, we arrive at

$$p(\mathsf{LE}^{-1}(\eta)) = p(\eta) \prod_{j=0}^{m} p(\mathcal{K}_{\mathsf{A}_{j}}(x_{j}, x_{j})).$$

LERW in Finite Sets

Definition

The LERW from x to ∂A in A is the path $LE(S[0, \tau_A])$, given by the probability measure

$$\hat{\rho}_A(\eta) = \mathbf{P}^{\mathsf{x}} \left\{ \mathsf{LE}(S[0,\tau_A]) = \eta \right\} = \mathbf{P}^{\mathsf{x}} \left\{ S[0,\tau_A] \in \mathsf{LE}^{-1}(\eta) \right\}.$$

Proposition

$$\hat{p}_A(\eta) = p(\eta)F_{\eta}(A).$$

Spanning Trees

- A tree T of A is a collection of edges which contains no loops (cycles) and the restriction of the graph A to T is connected.
- The tree T is a spanning tree of A if every vertex in A is incident on some edge in T.
- Given a root x_0 , $(T; x_0)$ is a rooted tree for which we can define an orientation of T, where each edge points toward x_0 .

Uniform Spanning Tree

We define the weight of T with respect to x_0 by

$$p(T; x_0) = \prod_{e \in T} p(\vec{e}),$$

where \vec{e} is a directed edge with the orientation given by the tree.

Definition (uniform spanning tree)

The uniform spanning tree (UST) on A is random spanning tree with the probability measure μ_A on the set \mathfrak{T} of spanning trees of A given by

$$\mu_A(T) = \frac{p(T; x_0)}{\sum_{T \in \mathfrak{T}} p(T; x_0)}.$$

This is the uniform distribution on $\mathfrak T$ if p is given by the simple random walk on A.

Wilson's algorithm builds a random spanning tree from LERW.

Definition (Wilson's algorithm)

Let $A, \mathbf{P}, x_0 \in A$. Initialise $\mathcal{T}_0 = \emptyset$, $\eta_0 = [x_0]$.

- Run a LERW in $A_0 = A \setminus \eta^0$ from x_1 to $\partial A_0 = x_0$ to get a path η^1 . Add η^1 to the tree by defining $\mathcal{T}_1 = \mathcal{T}_0 \cup \eta^1$ and $A_1 = A_0 \setminus \mathcal{T}_1$.
- **②** Recursively, if A_k is empty, then we have a spanning tree $\mathcal{T} \stackrel{\text{def}}{=} \mathcal{T}_k$. STOP.
- Otherwise, let j denote the smallest index with $x_j \notin A_k$. Run a LERW η in A_k from x_j to \mathcal{T}_k . Add η to the tree \mathcal{T}_k to form $\mathcal{T}_{k+1} \stackrel{\mathrm{def}}{=} \mathcal{T}_k \cup \eta$ and let $A_{k+1} = A_k \setminus \mathcal{T}_{k+1}$, i.e. the vertices that are not yet connected to the tree.

Theorem

Wilson's Algorithm generates spanning trees in the same distribution as the uniform spanning tree.

$$p(\eta^1)F_{\eta^1}(A\setminus\eta^0)$$

$$p(\eta^1)F_{\eta^1}(A\setminus\eta^0)p(\eta^2)F_{\eta^2}(A\setminus(\eta^0\cup\eta^1))$$

$$\textit{p}(\eta^{1})\textit{F}_{\eta^{1}}(\textit{A}\setminus \eta^{0})\textit{p}(\eta^{2})\textit{F}_{\eta^{2}}(\textit{A}\setminus (\eta^{0}\cup \eta^{1}))\textit{p}(\eta^{3})\textit{F}_{\eta^{3}}(\textit{A}\setminus (\eta^{0}\cup \eta^{1}\cup \eta^{2}))$$

$$\begin{array}{l} p(\eta^1)F_{\eta^1}(A\setminus\eta^0)p(\eta^2)F_{\eta^2}(A\setminus(\eta^0\cup\eta^1))p(\eta^3)F_{\eta^3}(A\setminus(\eta^0\cup\eta^1\cup\eta^2))p(\eta^4)F_{\eta^4}(A\setminus(\eta^0\cup\eta^1\cup\eta^2\cup\eta^3)) \end{array}$$

$$\begin{array}{l} p(\eta^1)F_{\eta^1}(A\setminus\eta^0)p(\eta^2)F_{\eta^2}(A\setminus(\eta^0\cup\eta^1))p(\eta^3)F_{\eta^3}(A\setminus(\eta^0\cup\eta^1\cup\eta^2))p(\eta^4)F_{\eta^4}(A\setminus(\eta^0\cup\eta^1\cup\eta^2\cup\eta^3))p(\eta^5)F_{\eta^5}(A\setminus(\eta^0\cup\eta^1\cup\eta^2\cup\eta^3\cup\eta^4)) \end{array}$$

$$\begin{array}{l} p(\eta^{1})F_{\eta^{1}}(A\setminus\eta^{0})p(\eta^{2})F_{\eta^{2}}(A\setminus(\eta^{0}\cup\eta^{1}))p(\eta^{3})F_{\eta^{3}}(A\setminus(\eta^{0}\cup\eta^{1}\cup\eta^{2}))p(\eta^{4})F_{\eta^{4}}(A\setminus(\eta^{0}\cup\eta^{1}\cup\eta^{2}\cup\eta^{3}))p(\eta^{5})F_{\eta^{5}}(A\setminus(\eta^{0}\cup\eta^{1}\cup\eta^{2}\cup\eta^{3}\cup\eta^{4}))p(\eta^{6})F_{\eta^{6}}(A\setminus(\eta^{0}\cup\eta^{1}\cup\eta^{2}\cup\eta^{3}\cup\eta^{4}\cup\eta^{5})) \end{array}$$

$$\begin{array}{l} p(\eta^{1})F_{\eta^{1}}(A\setminus\eta^{0})p(\eta^{2})F_{\eta^{2}}(A\setminus(\eta^{0}\cup\eta^{1}))p(\eta^{3})F_{\eta^{3}}(A\setminus(\eta^{0}\cup\eta^{1}\cup\eta^{2}))p(\eta^{4})F_{\eta^{4}}(A\setminus(\eta^{0}\cup\eta^{1}\cup\eta^{2}\cup\eta^{3}))p(\eta^{5})F_{\eta^{5}}(A\setminus(\eta^{0}\cup\eta^{1}\cup\eta^{2}\cup\eta^{3}\cup\eta^{4}))p(\eta^{6})F_{\eta^{6}}(A\setminus(\eta^{0}\cup\eta^{1}\cup\eta^{2}\cup\eta^{3}\cup\eta^{4}\cup\eta^{5}))p(\eta^{7})F_{\eta^{7}}(A\setminus(\eta^{0}\cup\eta^{1}\cup\eta^{2}\cup\eta^{3}\cup\eta^{3}\cup\eta^{4}\cup\eta^{5}\cup\eta^{6})) \end{array}$$

Wilson's Algorithm Generates UST

Proof (sketch).

The probability that T is chosen is

$$p(\eta^1)F_{\eta^1}(A)p(\eta^2)F_{\eta^2}(A\setminus(\eta^0\cup\eta^1))\cdots p(\eta^k)F_{\eta^k}(A\setminus(\eta^1\cup\cdots\cup\eta^{k-1})).$$

Note that vertex sets, $A = \eta^1 \cup \cdots \cup \eta^{k-1} \cup \eta^k$. Hence, the above is equal to $p(T; x_0)F_A(A)$. Therefore, the probability that T is chosen is

$$\frac{p(T;x_0)F_A(A)}{\sum_{T\in\mathfrak{T}}p(T;x_0)F_A(A)}=\frac{p(T;x_0)}{\sum_{T\in\mathfrak{T}}p(T;x_0)}.$$

Not in this presentation

- This presentation was very combinatorial, only includes LERW on finite graphs.
- We can define LERW as LE($S[0,\infty)$) for transient Markov chains on infinite graphs, e.g. simple random walk on \mathbb{Z}^d for $d \geq 3$.
- LERW can only be defined for some recurrent Markov chains: $LE(S[0,\infty))$ is not well-defined since

$$\sup \{k \; ; \; \omega_k = \omega_0\}$$

does not exist.