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Introduction

Self-avoiding walks (SAW) are paths that do not visit the same
vertex twice.

Introduced by Lawler in 1979, the loop-erased random walk (LERW)
is a model of self-avoiding walks.

LERW = Markov chains + loop-erasure.
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Markov Chains on Finite Sets

Let A, ∂A be disjoint finite vertex sets and denote A = A ∪ ∂A. We
may also use A, ∂A,A to denote their complete graphs.

A Markov chain S from x0 to ∂A is given by the measure Px0 with
transition probabilities (p(x , y))x,y∈A.

It is stopped at ∂A by setting p(x , y) = δxy for x , y ∈ ∂A.

Its path is given by S [0, τA] = [S0, . . . ,SτA ], where
τA = inf {j ≥ 0 ; Sj /∈ A} is the exit time of A.

Simple random walk: a Markov chain with transition probabilities
p(x , y) = 1/dA(x), the degree of x in A.

∂A

S
τA

∂A
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Markov Chain as Measure on Path Space

Given a directed edge e⃗ = [x , y ], define weight p(e⃗) = p(x , y).

We can concatenate directed edges e⃗ = [x , y ], f⃗ = [y , z ] to form a

path e⃗ ⊕ f⃗ = [x , y , z ].

For a path ω = [x0, . . . , xn] = e⃗1 ⊕ · · · ⊕ e⃗n, p(ω) =
∏n

j=1 p(e⃗j).

This induces a measure p on sets of paths, e.g. we can write
p(KA(x , y)), where KA(x , y) denotes the set of paths from x to y in
A.

Let ω = [x0, . . . , xn] ∈ KA(x0, xn). By the Markov property, we can
write

Px0 {S [0, n] = ω} = Px0 {S0 = x0, . . . ,Sn = xn} = p(ω).
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Loop-Erasure

Let WA(x , y) denote the set of SAWs from x to y in A.

Definition (Loop-erasure)

We define a deterministic procedure called (chronological) loop-erasure

LE : ω ∈ KA(x , y) 7→ η ∈ WA(x , y).

It is given by the following:

1 Let ω = [ω0, . . . , ωn] ∈ KA(x , y), j0 = sup {k ; ωk = ω0}, and
η0 = ω0 = ωj0 .

2 If ji < n, set ji+1 = sup {k ; ωk = ωji+1}, and ηj+1 = ωji+1(= ωji+1).
Recursively apply this procedure until jm = n.

3 Set LE(ω) = η = [η0, . . . , ηm].
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Loop-Erasure

Definition (Loop-erasure)

1 Let ω = [ω0, . . . , ωn] ∈ KA(x , y), j0 = sup {k ; ωk = ω0}, and
η0 = ω0 = ωj0 .

2 If ji < n, set ji+1 = sup {k ; ωk = ωji+1}, and ηj+1 = ωji+1(= ωji+1).
Recursively apply this procedure until jm = n.

3 Set LE(ω) = η = [η0, . . . , ηm].

ω0
ωj0+1

ωj1+1

j0 = 8, j1 = 15, j2 = 16
Baining Zhang Supervised by Prof Maximilian Nitzschner Loop-Erased Random Walks



Loop-Erasure

Definition (Loop-erasure)

1 Let ω = [ω0, . . . , ωn] ∈ KA(x , y), j0 = sup {k ; ωk = ω0}, and
η0 = ω0 = ωj0 .

2 If ji < n, set ji+1 = sup {k ; ωk = ωji+1}, and ηj+1 = ωji+1(= ωji+1).
Recursively apply this procedure until jm = n.

3 Set LE(ω) = η = [η0, . . . , ηm].

η0 = ω0
η1 = ωj0+1

η2 = ωj1+1
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Loop-Erasure

What is the probability that η is the loop-erasure of the path of a Markov
chain. That is, what is p(LE−1(η))?

Theorem

Let η = [x0, . . . , xm, xm+1], where xm+1 ∈ ∂A.

p(LE−1(η)) = p(η)
m∏
j=0

p(KAj (xj , xj)),where Aj = A \ {x0, . . . , xj−1} .

The product is a measure of all possible combinations of loops erased.
We write

Fη(A) =
m∏
j=0

p(KAj (xj , xj)).
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Loop-Erasure

ω = ℓ0 ⊕ [x0, x1]⊕ ℓ1 ⊕ [x1, x2]⊕ ℓ2 ⊕ [x2, x3]⊕ ℓ3 ⊕ [x3, x4]

xx4

Whole path ω

xx4

Loop-erasure η

xx4

Loop ℓ0 at x0

xx4

Loop ℓ1 at x1

xx4

Loop ℓ2 at x2

xx4

Loop ℓ3 at x3
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Loop-Erasure

Proof (sketch).

Given some path ω ∈ LE−1(η), we have the unique decomposition

ω = ℓ0 ⊕ [x0, x1]⊕ ℓ1 ⊕ [x1, x2]⊕ · · · ⊕ [xm−1, xm]⊕ ℓm ⊕ [xm, xm+1],

where ℓj ∈ KAj (xj , xj). From this, we obtain p(ω) = p(η)p(ℓ0) . . . p(ℓm).
Summing over all possible choices of the loops ℓ0, . . . ℓm, we arrive at

p(LE−1(η)) = p(η)
m∏
j=0

p(KAj (xj , xj)).
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LERW in Finite Sets

Definition

The LERW from x to ∂A in A is the path LE (S [0, τA]), given by the
probability measure

p̂A(η) = Px {LE(S [0, τA]) = η} = Px
{
S [0, τA] ∈ LE−1(η)

}
.

S
τA

Proposition

p̂A(η) = p(η)Fη(A).
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Spanning Trees

A tree T of A is a collection of edges which contains no loops
(cycles) and the restriction of the graph A to T is connected.

The tree T is a spanning tree of A if every vertex in A is incident on
some edge in T .

Given a root x0, (T ; x0) is a rooted tree for which we can define an
orientation of T , where each edge points toward x0.

x
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Uniform Spanning Tree

We define the weight of T with respect to x0 by

p(T ; x0) =
∏
e∈T

p(e⃗),

where e⃗ is a directed edge with the orientation given by the tree.

Definition (uniform spanning tree)

The uniform spanning tree (UST) on A is random spanning tree with the
probability measure µA on the set T of spanning trees of A given by

µA(T ) =
p(T ; x0)∑

T∈T p(T ; x0)
.

This is the uniform distribution on T if p is given by the simple random
walk on A.
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Wilson’s Algorithm

Wilson’s algorithm builds a random spanning tree from LERW.

Definition (Wilson’s algorithm)

Let A,P, x0 ∈ A. Initialise T0 = ∅, η0 = [x0].

1 Run a LERW in A0 = A \ η0 from x1 to ∂A0 = x0 to get a path η1.
Add η1 to the tree by defining T1 = T0 ∪ η1 and A1 = A0 \ T1.

2 Recursively, if Ak is empty, then we have a spanning tree T def
= Tk .

STOP.

3 Otherwise, let j denote the smallest index with xj /∈ Ak . Run a
LERW η in Ak from xj to Tk . Add η to the tree Tk to form

Tk+1
def
= Tk ∪ η and let Ak+1 = Ak \ Tk+1, i.e. the vertices that are

not yet connected to the tree.

Theorem

Wilson’s Algorithm generates spanning trees in the same distribution as
the uniform spanning tree.
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Wilson’s Algorithm

x0 x1
∂(A \ η0)
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Wilson’s Algorithm

x0 x1 x3

η
1

∂(A \ (η0 ∪ η1))
A \ (η0 ∪ η1)

p(η1)Fη1(A \ η0)
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Wilson’s Algorithm

x0 x1 x3

η
1

η
2

p(η1)Fη1(A \ η0)p(η2)Fη2(A \ (η0 ∪ η1))
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Wilson’s Algorithm

x0 x1 x3 x4

η
1

η
2

η
3

p(η1)Fη1(A \ η0)p(η2)Fη2(A \ (η0 ∪ η1))p(η3)Fη3(A \ (η0 ∪ η1 ∪ η2))
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Wilson’s Algorithm

x0 x1 x3 x4

x10

η
1

η
2

η
3

η
4

p(η1)Fη1(A \ η0)p(η2)Fη2(A \ (η0 ∪ η1))p(η3)Fη3(A \ (η0 ∪ η1 ∪
η2))p(η4)Fη4(A \ (η0 ∪ η1 ∪ η2 ∪ η3))
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Wilson’s Algorithm

x0 x1 x3 x4

x10

x20

η
1

η
2

η
3

η
4

η
5

p(η1)Fη1(A \ η0)p(η2)Fη2(A \ (η0 ∪ η1))p(η3)Fη3(A \ (η0 ∪ η1 ∪
η2))p(η4)Fη4(A \ (η0 ∪ η1 ∪ η2 ∪ η3))p(η5)Fη5(A \ (η0 ∪ η1 ∪ η2 ∪ η3 ∪ η4))
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Wilson’s Algorithm

x0 x1 x3 x4

x10

x20 x23

η
1

η
2

η
3

η
4

η
5

η
6

p(η1)Fη1(A \ η0)p(η2)Fη2(A \ (η0 ∪ η1))p(η3)Fη3(A \ (η0 ∪ η1 ∪
η2))p(η4)Fη4(A \ (η0 ∪ η1 ∪ η2 ∪ η3))p(η5)Fη5(A \ (η0 ∪ η1 ∪ η2 ∪ η3 ∪
η4))p(η6)Fη6(A \ (η0 ∪ η1 ∪ η2 ∪ η3 ∪ η4 ∪ η5))
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Wilson’s Algorithm

x0 x1 x3 x4

x10

x20 x23 x24

η
1

η
2

η
3

η
4

η
5

η
6

η
7

p(η1)Fη1(A \ η0)p(η2)Fη2(A \ (η0 ∪ η1))p(η3)Fη3(A \ (η0 ∪ η1 ∪
η2))p(η4)Fη4(A \ (η0 ∪ η1 ∪ η2 ∪ η3))p(η5)Fη5(A \ (η0 ∪ η1 ∪ η2 ∪ η3 ∪
η4))p(η6)Fη6(A \ (η0 ∪ η1 ∪ η2 ∪ η3 ∪ η4 ∪ η5))p(η7)Fη7(A \ (η0 ∪ η1 ∪
η2 ∪ η3 ∪ η4 ∪ η5 ∪ η6))
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Wilson’s Algorithm Generates UST

Proof (sketch).

The probability that T is chosen is

p(η1)Fη1(A)p(η2)Fη2(A \ (η0 ∪ η1)) · · · p(ηk)Fηk (A \ (η1 ∪ · · · ∪ ηk−1)).

Note that vertex sets, A = η1 ∪ · · · ∪ ηk−1 ∪ ηk . Hence, the above is
equal to p(T ; x0)FA(A). Therefore, the probability that T is chosen is

p(T ; x0)FA(A)∑
T∈T p(T ; x0)FA(A)

=
p(T ; x0)∑

T∈T p(T ; x0)
.
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Not in this presentation

This presentation was very combinatorial, only includes LERW on
finite graphs.

We can define LERW as LE(S [0,∞)) for transient Markov chains on
infinite graphs, e.g. simple random walk on Zd for d ≥ 3.

LERW can only be defined for some recurrent Markov chains:
LE(S [0,∞)) is not well-defined since

sup {k ; ωk = ω0}

does not exist.
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