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Introduction

o Self-avoiding walks (SAW) are paths that do not visit the same
vertex twice.

@ Introduced by Lawler in 1979, the loop-erased random walk (LERW)
is a model of self-avoiding walks.

o LERW = Markov chains + loop-erasure.
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Markov Chains on Finite Sets

Let A, OA be disjoint finite vertex sets and denote A = AU JA. We
may also use A, DA, A to denote their complete graphs.

A Markov chain S from xp to OA is given by the measure P* with
transition probabilities (p(x, y)), ,ca-

It is stopped at OA by setting p(x, y) = d,, for x,y € JA.

Its path is given by S[0,7a] = [So, ..., Sr,], where

Ta=inf{j >0; S; ¢ A} is the exit time of A.

Simple random walk: a Markov chain with transition probabilities
p(x,y) = 1/da(x), the degree of x in A.
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Markov Chain as Measure on Path Space

Given a directed edge € = [x, y], define weight p(€) = p(x,y).

@ We can concatenate directed edges € = [x, y], f= [y, z] to form a
path €® f =[x, y, z].

For a path w = [xo,..., x| = & @ --- © &, p(w) = [[}_; p(&).
This induces a measure p on sets of paths, e.g. we can write
p(Ka(x,y)), where ICa(x,y) denotes the set of paths from x to y in
A.

Let w = [xo,. .., Xn] € Ka(xo,xn). By the Markov property, we can
write

P {S[0,n] = w} =P {Sy = x0,..., 5, = xa} = p(w).
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Loop-Erasure

Let Wa(x, y) denote the set of SAWSs from x to y in A.

Definition (Loop-erasure)

We define a deterministic procedure called (chronological) loop-erasure
LE : w € Ka(x,y) = n € Wal(x, y).

It is given by the following:
Q Let w=[wp,...,w,] € Ka(x,y), jo=sup{k; wx =wp}, and
Mo = Wo = OJJ'O.
Q If ji < n, set ji1 =sup{k; wk =wjt1}, and Nj11 = wjti1(= wj,,)-
Recursively apply this procedure until j,, = n.
@ Set LE(w)=n=[n0,---,0m]-
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Loop-Erasure

Definition (Loop-erasure)

Q Let w=[wo,...,wy] € Kal(x,y), jo=sup{k; wx =wp}, and

o = Wo = Wjy-

Q |fj,' < n, set Jiy1 = sup{k; Wk = (.UJ',.+1}, and Nj+1 = wj,+1(: UJJ',.H).
Recursively apply this procedure until j,, = n.

@ Set LE(w) =n = [no,- -, m]-

Wii+1

Wip+1

22

Jo=28,j1=15,=16
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Loop-Erasure

Definition (Loop-erasure)

Q Let w=[wp,...,ws] € Ka(x,y), jo =sup{k; wx = wp}, and

Tlo = Wo = Wjp-

Q If j; < n, set jir1 =sup{k;

wk = wjy1}, and N1 = wjp1(= Wiy, )-

Recursively apply this procedure until j,, = n.
@ Set LE(w) =7 = [no,- - Mm]-

= Wil

= Wjp+1

L. gl =wo
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Loop-Erasure

What is the probability that 7 is the loop-erasure of the path of a Markov
chain. That is, what is p(LE™(7))?

Theorem

Let n = [x0, - - -y Xm, Xm+1], where Xpmi1 € OA.
m
P(LE"Y(m)) = p(n) [ ] p(Ka; (x5, %)), where A; = A\ {xo,.... X1} -
j=0

The product is a measure of all possible combinations of loops erased.
We write

Fo(A) =[] p(Ka (x5, ).
j=0
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Loop-Erasure
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Loop-Erasure

Proof (sketch).

Given some path w € LE~1(n), we have the unique decomposition
w =1L ® [x0,x] Dl ® [x1,%] D+ ® [Xm—1,Xm] D £ © [Xm, Xm11],

where (; € Ka.(xj, ;). From this, we obtain p(w) = p(n)p(fo) - - . p(€m)-
Summing over all possible choices of the loops ¢y, ... /¢, we arrive at

J:O
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LERW in Finite Sets

Definition
The LERW from x to A in A is the path LE(S[0, 7a]). given by the
probability measure

pa(n) = P*{LE(S[0, 7a]) = n} = P* {50, 7a] € LE'(1)} .

Proposition
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Spanning Trees

@ A tree T of Ais a collection of edges which contains no loops
(cycles) and the restriction of the graph A to T is connected.

@ The tree T is a spanning tree of A if every vertex in A is incident on
some edge in T.

@ Given a root xg, (T; o) is a rooted tree for which we can define an
orientation of T, where each edge points toward xg.

I I R .
g A
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Uniform Spanning Tree

We define the weight of T with respect to xy by

p(T;x0) = HP

ecT
where € is a directed edge with the orientation given by the tree.

Definition (uniform spanning tree)

The uniform spanning tree (UST) on A is random spanning tree with the
probability measure 14 on the set T of spanning trees of A given by

p(T: x0)
Zreg P(T; XO) .

This is the uniform distribution on ¥ if p is given by the simple random
walk on A.

pa(T) =
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Wilson's Algorithm

Wilson's algorithm builds a random spanning tree from LERW.

Definition (Wilson's algorithm)

Let A,P,xp € A. Initialise To = 0, 1o = [x0]-
@ Run a LERW in Ay = A\ n° from x; to 9Ag = xo to get a path nl.
Add 7! to the tree by defining 73 = To Un! and A; = A\ T1.
@ Recursively, if Ag is empty, then we have a spanning tree = T
STOP.

© Otherwise, let j denote the smallest index with x; ¢ Ak. Run a
LERW 7 in Ax from x; to 7. Add 7 to the tree 7, to form

def . .
Tri1 = T, U 7 and let Agy1 = Ak \ Tkt1, i.e. the vertices that are
not yet connected to the tree.

Theorem

Wilson's Algorithm generates spanning trees in the same distribution as
the uniform spanning tree.
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Wilson's Algorithm

I(A\ o) x Z A\n°
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Wilson's Algorithm

(AN (n°Unh))

X a4]]

A\ (n°Unt)
s

n

p(n')Fp(A\n°)

Baining Zhang Supervised by Prof Maximilian Nitzschner Loop-Erased Random Walks



Wilson's Algorithm
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Wilson's Algorithm
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Wilson's Algorithm
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Wilson's Algorithm
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Wilson's Algorithm
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Wilson's Algorithm
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Wilson's Algorithm Generates UST

Proof (sketch).
The probability that T is chosen is

p(n") Fop(A)p(1?) Frp (AN (° Unh)) - - p(*) F (AN (0" U -~ U 1)),
Note that vertex sets, A=n U---Un "1 Un¥. Hence, the above is
equal to p(T; x0)Fa(A). Therefore, the probability that T is chosen is

P(Tix0)Fa(A) (T x)
Yrex P(Tix0)Fa(A) > orex P(Tix0)
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Not in this presentation

@ This presentation was very combinatorial, only includes LERW on
finite graphs.

@ We can define LERW as LE(S]0, 00)) for transient Markov chains on
infinite graphs, e.g. simple random walk on Z9 for d > 3.

@ LERW can only be defined for some recurrent Markov chains:
LE(S]0, 00)) is not well-defined since

sup {k; wk = wo}

does not exist.
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