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Abstract

We study the quenched critical point ĥqβ,X(x) of the self-avoiding walk among random con-

ductances, generalizing the results of Chino and Sakai, (J Stat Phys (2016) 163:754–764)

to the case of infinite connected graphs of bounded degrees with i.i.d. conductances. We

show that the connective constant and the quenched critical point are independent of the

choice of the reference point. We also show that the quenched critical point is non-random

and satisfies the inequality h0 − βE [Xe] ≤ ĥqβ,X(x) almost surely.

1 Introduction

The self-avoiding walk is a model of statistical mechanics introduced by Flory [Flo53] for

modelling polymer chains. It has since then become a very interesting object in mathematics,

leading to many rigorous results and even more open problems, most of which are supported

by numerical simulations and physical considerations. We refer to [MS93] for a thorough

introduction to this subject.

It is more realistic to model a polymer chain in a random, inhomogeneous medium. Re-

cently, the behaviour of self-avoiding walks has been studied on infinite supercritical percola-

tion clusters on Zd in [Lac14b; Lac14a] by Lacoin. In dimension two, it was established that

the quenched connective constant (and hence the quenched critical point) is strictly less than

the annealed above the critical probability. For sufficiently high dimensions, it was shown that
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there exists a regime where this strict inequality holds. This suggests a strong disorder for the

self-avoiding walk, which indicates that the disorder from percolation alters the behaviour of

the trajectories.

Inspired by these results, Chino and Sakai studied the behaviour of self-avoiding walks on

ergodic and translation-invariant random conductances on Zd in [CS16]. The quenched critical

point was shown to be a constant on a set of probability one, and does not depend on the point of

reference. Furthermore, upper and lower bounds on the quenched critical points were provided.

In this report, we generalise some results in [CS16] to i.i.d. random conductances on infinite

connected graphs with bounded degree.

1.1 Definitions and Set-up

Let C be an infinite connected graph with bounded degree. A specific class of examples of

such graphs is given by infinite supercritical (Bernoulli) percolation clusters on Zd, where C

is the unique infinite cluster in the random subgraph of Zd obtained by removing edges in an

i.i.d. fashion with probability 1 − p, for p > pc, where pc is the percolation threshold, i.e. the

probability above which a unique infinite cluster exists almost surely.

We first introduce the self-avoiding walk (SAW). A (nearest-neighbour) path ω = (ω1, . . . , ωn)

is a SAW if its vertices do not repeat, i.e. ωi ̸= ωj for i ̸= j. Let Ω(x, y) denote the set of

SAWs from x to y in C. Let Ω(x) =
⋃

y∈C Ω(x, y) and Ω(x;n) = {ω ∈ Ω(x) ; |ω| = n}, where

for a given SAW ω, we denote its length by |ω|.

We view each edge of the path as a bond between consecutive monomers, which incurs an

energy cost of some h ∈ R. We define the susceptibility at x ∈ C as

χh(x) =
∑

ω∈Ω(x)

e−h|ω|.

The convergence of this series is the main issue of interest in this report. Note that χh(x) is

decreasing in h. Hence, we can define the critical point h0(x) for the susceptibility:

h0(x) = inf {h ∈ R : χh(x) < ∞} .

We define two other fundamental quantities for the SAW: the number of n-step SAWs and
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the two-point function

c(x;n) =
∑

ω∈Ω(x)

1{|ω|=n} and Gh(x, y) =
∑

ω∈Ω(x,y)

e−h|ω|.

We have the following important relation:

χh(x) =
∞∑
n=0

c(x;n)e−hn =
∑
y∈C

Gh(x, y).

In other words, the susceptibility can be viewed as a generating function for c(x;n).

Proposition 1. The connective constant µ(x) at x ∈ C, given by

µ(x) = lim sup
n→∞

c(x;n)
1
n ,

exists and is a constant independent of x. We write µ ≡ µ(x).

The proof of this proposition will be given in the next section.

The connective constant µ is a measure of the growth of the number of n-step SAWs in the

graph. It also gives the critical point of the susceptibility.

Proposition 2. The critical point h0(x) is constant in x and is given by

h0 = log µ.

Proof. Let h < log µ. Then there exists ε > 0 such that h < log(µ− ε). Since µ =

lim supn→+∞ c(x;n)
1
n , there exists an unbounded and increasing sequence (nk)k∈N of integers

such that

c(x;nk) ≥ (µ− ε)nk .

Hence, we have

χh(x) =
+∞∑
n=0

c(x;n)e−hn,

≥
+∞∑
k=0

c(x;nk) ·
1

(µ− ε)nk
,

≥
+∞∑
k=0

(µ− ε)nk

(µ− ε)nk
=

+∞∑
k=0

1 = +∞.
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For the other direction, let h > log µ. Then there exists ε > 0 such that h > log(µ+ ε).

For this ε, there exists N such that for all n ≥ N , we have c(x;n) ≤ (µ+ ε)n. Hence,

χh(x) =
+∞∑
n=0

c(x;n)e−hn,

≤
N−1∑
n=0

c(x;n)e−hn +
+∞∑
n=N

(µ+ ε)ne−hn,

≤
N−1∑
n=0

c(x;n)e−hn +
+∞∑
n=N

[
e−(h−log(µ+ε))

]n
,

< +∞.

Note that although the critical point does not depend on x, the (finite) value of the suscep-

tibility χh(x) still does.

We now place random conductances on the edges. Let E denote the set of edges with both

endpoints in C and X = {Xe}e∈E be a collection of independent and identically distributed

random variables with finite expectation (independent of the realization of C). Intuitively, Xe

represents the conductance on the edge e.

Given a random environment X and a strength of randomness β ≥ 0, we define the

quenched susceptibility at x ∈ C by

χ̂h,β,X(x) =
∑

ω∈Ω(x)

exp

−
|ω|∑
j=1

(h+ βXej)

,

where ej = (ωj−1, ωj). Similarly, we define the other two observables:

ĉβ,X(x;n) =
∑

ω∈Ω(x)

1{|ω|=n} exp

{
−

n∑
j=1

βXej

}
, and

Ĝh,β,X(x, y) =
∑

ω∈Ω(x,y)

exp

−
|ω|∑
j=1

(h+ βXej)

.

They are related to the quenched susceptibility by

χ̂h,β,X(x) =
∞∑
n=0

ĉβ,X(x;n)e
−hn =

∑
y∈C

Ĝh,β,X(x, y).
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The quenched critical point is defined as

ĥq
β,X(x) = inf {h ∈ R : χ̂h,β,X(x) < ∞} .

We also define the annealed critical point, given by

ĥa
β(x) = inf {h ∈ R : E [χ̂h,β,X(x)] < ∞} .

If E[χ̂h,β,X(x)] < ∞, it must be the case that χ̂h,β,X(x) < ∞ on a set of probability one.

Hence, we see that ĥq
β,X(x) ≤ ĥa

β(x) almost surely.

Assuming that the moment generating function of Xe exists, we can compute the annealed

critical point.

Recall that (X(e))e∈E is a collection of i.i.d. random variables. Writing λβ = E
[
e−βXe

]
,

we have

E [ĉβ,X(x, n)] =
∑

ω∈Ω(x)

1{|ω|=n}E

[
exp

{
−β

n∑
j=1

Xej

}]
,

=
∑

ω∈Ω(x)

1{|ω|=n}

n∏
j=1

E
[
e−βXej

]
,

= λn
β c(x;n).

Hence, the annealed susceptibility is given by

E [χ̂h,β,X(x)] =
∞∑
n=0

c(x;n)λn
βe

−hn,

=
∞∑
n=0

c(x;n)e−(h−log λβ)n,

= χh−log λβ
(x).

Therefore, we obtain the annealed critical point

ĥa
β = h0 + log λβ.

By Jensen’s inequality, we have

log λβ = logE
[
e−βXe

]
≥ −β E [Xe] ,
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which implies that

ĥa
β ≥ h0 − β E [Xe] .

This leads us to the main theorem, whose proof is given in the last section.

Theorem 1. Let β ≥ 0. The quenched critical point ĥq
β,X(x) is almost surely constant in x and

satisfies the following inequality:

h0 − β E [Xe] ≤ ĥq
β,X(x) ≤ ĥa

β almost surely.

2 The Connective Constant

In this section, we show that the connective constant µ(x) does not depend on the point of

reference x.

Lemma 1 (Lemma 2.1, [Lac14b]). For an infinite connected graph C with bounded degree, the

connective constant µ = lim supn→+∞ c(x;n)
1
n exists and does not depend on the choice of

x ∈ C.

Proof. Let D denote the maximum degree of the graph C. Then for any x ∈ C, we have

c(x;n) ≤ D(D − 1)n−1.

Therefore,

lim sup
n→+∞

c(x;n)
1
n ≤ D − 1.

This shows that the connective constant exists.

Since C is connected, it suffices to show that for any adjacent vertices u, v ∈ C, we have

lim sup
n→+∞

c(u;n)
1
n = lim sup

n→+∞
c(v;n)

1
n .

Let Ω1(u;n) denote the set of n-step SAWs starting at u which do not pass through v and

Ω2(u, v;n) denote the set of n-step SAWs starting at u and ending at v. Then we have the

following relations:

|Ω2(u, v;n)| = |Ω2(v, u;n)| ≤ c(v;n),
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|Ω1(u;n)| ≤ c(v;n+ 1).

The first line follows from symmetry and inclusion. For the second line, notice that for any

ω ∈ Ω1(u;n), we can extend it to a (n + 1)-step SAW by adding the edge (v, u) at the start of

the path, which injects Ω1(u;n) into Ω(v;n+ 1).

Given a SAW ω, let k denote its time of visit to v. We can decompose the set Ω(u;n)

according to k:

c(u;n) = |Ω(u;n)| ≤
n∑

k=1

|Ω2(u, v; k)||Ω(v, n− k)|+ |Ω1(u;n)|︸ ︷︷ ︸
k=∞, i.e. does not visit v

≤
n∑

k=1

c(v; k)c(v;n− k) + c(v;n+ 1).

Notice that the first sum is a convolution. We are going to bound it.

Fix ε > 0. Then there exists N such that for any n ≥ N , c(v;n) ≤ (µ(v) + ε)n. In the

following, let n > 2N . We will split the sum into three parts.

Part 1: 1 ≤ k ≤ N Let C = c(v;N). Then C ≥ c(v, k) for any k ≤ N . Moreover, we

have n− k > N , so c(v;n− k) ≤ (µ(v) + ε)n−k. Hence,

N∑
k=1

c(v; k)c(v;n− k) ≤ NC(µ(v) + ε)n.

Part 2: N + 1 ≤ k ≤ n − N − 1 For k > N , we have c(v; k) ≤ (µ(v) + ε)k and

c(v;n− k) ≤ (µ(v) + ε)n−k, which gives the bound

n−N−1∑
k=N+1

c(v; k)c(v;n− k) ≤
n−N−1∑
k=N+1

(µ(v) + ε)k(µ(v) + ε)n−k = (n− 2N − 1)(µ(v) + ε)n.

Part 3: n − N ≤ k ≤ n For k ≥ n − N > N , we have c(v; k) ≤ (µ(v) + ε)k and

c(v;n− k) ≤ C = c(v;N). Therefore,

n∑
k=n−N

c(v; k)c(v;n− k) ≤ C(µ(v) + ε)n.

We put the above together. Let D denote the maximum degree of the graph C. For n > 2N ,

we have

c(u;n) ≤ (NC + (n− 2N − 1) + C) (µ(v) + ε)n + c(v;n+ 1),
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≤ (NC + (n− 2N − 1) + C +D) (µ(v) + ε)n,

lim sup
n→+∞

c(u;n)
1
n ≤ µ(v) + ε.

Since ε > 0 is arbitrary, we have shown that

lim sup
n→+∞

c(u;n)
1
n ≤ lim sup

n→+∞
c(v;n)

1
n .

By symmetry, we see that this is an equality. Hence, we have shown that the connective constant

is independent of the choice of x ∈ C.

3 Proof of the Main Theorem

Lemma 2 (Lemma 2.1, [CS16]). The quenched critical point ĥq
β,X(x) is almost surely constant

in x.

Proof. We will show that

χ̂h,β,X(u) ≤ χ̂h,β,X(v)
2 + eh+βX(v,u)χ̂h,β,X(v)

holds for any adjacent vertices u, v ∈ C. By symmetry, this bound shows that χ̂h,β,X(u) and

χ̂h,β,X(v) must be simultaneously finite or infinite. Since C is connected, this implies that the

convergence of χ̂h,β,X(x) is the same for all x ∈ C for some fixed h. Therefore, the quenched

critical point ĥq
β,X(x) does not vary with x.

To show this inequality, we first write the quenched susceptibility at u as follows:

χ̂h,β,X(u) =
∑

ω∈Ω(u)

exp

−
|ω|∑
j=1

(h+ βXej(ω))

(1{v∈ω} + 1{v/∈ω}
)
.

For any SAW ω ∈ Ω(u) which passes through v, we can split it at v into a part ω1 ∈ Ω(u, v),

and another part ω2 ∈ Ω(v). Hence, the first term can be bounded as follows:

∑
ω∈Ω(u) ; v∈ω

exp

−
|ω|∑
j=1

(h+ βXej(ω))


≤

 ∑
ω1∈Ω(u,v)

exp

−
|ω|∑
j=1

(h+ βXej(ω))


 ∑

ω2∈Ω(v)

exp

−
|ω|∑
j=1

(h+ βXej(ω))


 ,
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= Ĝh,β,X(u, v)χ̂h,β,X(v),

≤

(∑
w∈C

Ĝh,β,X(v, w)

)
χ̂h,β,X(v),

= χ̂h,β,X(v)
2.

For SAWs ω ∈ Ω(u) which do not pass through v, we can extend them to v by adding

the edge (v, u) at the start of the path to get ω′ = (v, u) ⊕ ω. Hence, the second term can be

bounded as follows:

∑
ω∈Ω(u) ; v/∈ω

exp

−
|ω|∑
j=1

(h+ βXej(ω))

 ≤
∑

ω′∈Ω(v)

exp

−
|ω′|∑
j=1

(h+ βXej(ω′))

eh+βX(v,u)

= χ̂h,β,X(v)e
h+βX(v,u) .

Putting the two terms together, we obtain the desired bound.

Lemma 3 (analogous to Lemma 2.2, [CS16]). The quenched critical point ĥq
β,X is non-random.

Proof. Note that ∑
q∈Q∪{+∞}

P
[
ĥq
β,X ≤ q

]
≥ P[ĥq

β,X ≤ +∞] = 1.

Since the event
{
ĥq
β,X ≤ q

}
is measurable with respect to the tail σ-algebra of (Xe)e∈E, by

Kolmogorov’s 0-1 law, its probability P
[
ĥq
β,X ≤ q

]
is either 0 or 1 for every q ∈ Q ∪ {+∞}.

Let h = inf
{
q ∈ Q ∪ {+∞} ; P

[
ĥq
β,X ≤ q

]
= 1
}

. If h = +∞, then P
[
ĥq
β,X = +∞

]
=

1 and we are done. Otherwise, we have h < +∞ and P
[
ĥq
β,X ≤ h

]
= 1 by right-continuity.

Since h is the infimum, for any ε > 0, P
[
ĥq
β,X ≤ h− ε

]
< 1, which means that it must be

zero. Therefore, we have

P
[
ĥq
β,X = h

]
= P

{ĥq
β,X ≤ h

}
\

⋃
ε∈Q∩(0,1)

{
ĥq
β,X ≤ h− ε

} ,

≥ P
[
ĥq
β,X ≤ h

]
−

∑
ε∈Q∩(0,1)

P
[
ĥq
β,X ≤ h− ε

]
,

= 1.

Hence, we have shown that the quenched critical point ĥq
β,X is almost surely equal to some

fixed constant h.
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Now, we show the inequality. Let β > 0 and δ > 0. Then we want to show that for

h = h0 − β E [Xe]− βδ, the quenched susceptibility χ̂h,β,X(x) is almost surely infinite for all

x ∈ C. Since χ̂h,β,X(x) is almost surely constant in x, it suffices to show this for a fixed x ∈ C.

Let ∆e = Xe − E [Xe]. We define a (random) set of SAWs:

Ω̂good
δ,X (x;n) =

{
ω ∈ Ω(x;n) ;

∣∣∣∣∣ 1n
n∑

j=1

∆ej(ω)

∣∣∣∣∣ < δ

}
.

In particular, for every ω ∈ Ω̂good
δ,X (x;n), we have the following bound:

δ − 1

n

n∑
j=1

∆ej(ω) ≥ 0.

We can now bound the quenched susceptibility χ̂h,β,X(x) from below:

χ̂h,β,X(x) =
∑

ω∈Ω(x)

exp

−
|ω|∑
j=1

(h0 − β E [Xe]− βδ + βXej(ω))

,

≥
+∞∑
n=0

∑
ω∈Ω̂good

δ,X (x;n)

exp

{
−

n∑
j=1

(h0 − β E [Xe]− βδ + βXej(ω))

}
,

=
+∞∑
n=0

∑
ω∈Ω̂good

δ,X (x;n)

1

µn
exp

{
β

n∑
j=1

(δ −∆ej(ω))

}
,

=
+∞∑
n=0

∑
ω∈Ω̂good

δ,X (x;n)

1

µn
exp

βn (δ − 1

n

n∑
j=1

∆ej(ω))︸ ︷︷ ︸
≥0

,

=
+∞∑
n=0

∑
ω∈Ω̂good

δ,X (x;n)

1

µn
,

≥
+∞∑
n=0

1

µn

∣∣∣Ω̂good
δ,X (x;n)

∣∣∣.
Notice that if there are many good n-step SAWs, say

∣∣∣Ω̂good
δ,X (x;n)

∣∣∣ ≥ 1
2
c(n) for infinitely

many n, then the susceptibility diverges.

P [χ̂h,β,X(x) = ∞]

≥ P

[
χ̂h,β,X(x) = ∞ | lim sup

n→+∞

{∣∣∣Ω̂good
δ,X (x;n)

∣∣∣ ≥ 1

2
c(n)

}]
P

[
lim sup
n→+∞

{∣∣∣Ω̂good
δ,X (x;n)

∣∣∣ ≥ 1

2
c(n)

}]
,
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≥ lim sup
n→+∞

P

[∣∣∣Ω̂good
δ,X (x;n)

∣∣∣ ≥ 1

2
c(n)

]
.

Since the convergence of the quenched susceptibility must depend on the conductances of in-

finitely many edges, the probability P [χ̂h,β,X = ∞] is either 0 or 1. Therefore, it suffices to

show that the above limit is positive. To do this, we will rely on the Paley-Zygmund inequality.

Lemma 4. Let Z ≥ 0 be a non-negative random variable with finite second moment. Then for

any ε ∈ (0, 1),

P (Z ≥ εE[Z]) ≥ (1− ε)2
E[Z]2

E[Z2]
.

Proof. We write

E [Z] = E
[
Z1{Z<εE[Z]}

]
+ E

[
Z1{Z≥εE[Z]}

]
.

The first term is bounded by

E
[
Z1{Z<εE[Z]}

]
≤
∫
{Z<εE[Z]}

εE [Z] dP ≤ εE [Z] .

We can apply the Cauchy-Schwarz inequality to the second term:

E
[
Z1{Z≥εE[Z]}

]2 ≤ E
[
Z2
]
P [Z ≥ εE [Z]] .

Putting the two terms together, we obtain the desired inequality.

We apply this to the random variable Z =
∣∣∣Ω̂good

δ,X (x;n)
∣∣∣. We have

E
[∣∣∣Ω̂good

δ,X (x;n)
∣∣∣] = ∑

ω∈Ω(x) ; |ω|=n

P

[∣∣∣∣∣ 1n
n∑

j=1

∆ej(ω) < δ

∣∣∣∣∣
]
= c(x;n)P

[∣∣∣∣∣ 1n
n∑

j=1

∆ej < δ

∣∣∣∣∣
]
.

Since (Xe)e∈E are i.i.d., (∆e)e∈E are also i.i.d.. We apply the weak law of large numbers to

obtain

P

[∣∣∣∣∣ 1n
n∑

j=1

∆ej < δ

∣∣∣∣∣
]
= 1− o(1) as n → +∞.

Combining this with the trivial bound E

[∣∣∣Ω̂good
δ,X (x;n)

∣∣∣2] ≤ c(n)2, we have

P

[∣∣∣Ω̂good
δ,X (x;n)

∣∣∣ ≥ 1

2
c(n)

]
≥
(
1− 1

2

)2 c(x;n)2P
[∣∣∣ 1n∑n

j=1∆ej < δ
∣∣∣]2

c(x;n)2
,

≥ 1

4
(1− o(1))2,
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lim sup
n→+∞

P

[∣∣∣Ω̂good
δ,X (x;n)

∣∣∣ ≥ 1

2
c(n)

]
≥ 1

4
.

This implies that

P [χ̂h,β,X = ∞] = 1

for h = h0 − β E [Xe] − βδ for any δ > 0. Therefore, the quenched critical point ĥq
β,X(x)

satisfies

h0 − β E [Xe] ≤ ĥq
β,X(x) almost surely.
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