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This project aims to study the loop-erased random walk (LERW) with an

emphasis towards its definition on Z2, prepare for further reading on its scaling

limit to SLE2, and explore its relationship with uniform spanning trees (UST).

We will outline the combinatorial properties of loop-erasure and define the

LERW for killed Markov chains on finite graphs, as well as for transient and

some recurrent chains on infinite graphs. For finite and transient chains, we will

explore the three forms of the LERW: the loop-erasure of the chain killed at

the boundary/the infinite chain, a non-Markovian process defined on the original

chain, and the Laplacian random walk. For the recurrent case, we make sense of

the latter two forms for chains that satisfy a specific property. Then, we will define

the UST on finite graphs and introduce Wilson’s algorithm, which connects the

UST to the LERW. We will move to wired boundary conditions on finite sets and

consider the wired spanning tree (WSF), which will allow us to define the uniform

spanning forest (USF) on Z𝒅, using an infinite version of Wilson’s algorithm.

Finally, we will return to the issue of defining the LERW on more general recurrent

chains, where we further explore its close connection with the UST.

The loop-erased random walk (LERW) is a model of non-self-intersecting paths on graphs. It was

initially introduced by Lawler in [Law80] to understand the self-avoiding walk, a different measure

on the set of non-self-intersecting paths. Although it turned out that these models are not very

similar, the LERW became an interesting model to study in its own right, in part due to its rich

connections to the Schramm-Loewner evolution, discovered by Schramm in [Sch00], and uniform
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spanning forests as in [Pem91]. The latter connection will be explored in this report as well. Except

for the last section, we use [Law17] and [Law22] as main references.

Markov Chains on Graphs

We will start in a general setting. Let 𝐴 and 𝜕𝐴 denote finite vertex sets, where 𝜕𝐴 should be

interpreted as the external boundary of 𝐴. We write 𝐴 = 𝐴 ∪ 𝜕𝐴. We may also use 𝐴, 𝜕𝐴, 𝐴 to

refer to the complete graphs generated by these vertex sets. Let 𝑆 denote an irreducible Markov

chain on 𝐴 with transition probabilities (𝑝(𝑥, 𝑦))
𝑥,𝑦∈𝐴, killed upon exiting 𝐴. We will use 𝑃

to denote its transition matrix and P𝑥 for the associated measure when starting at 𝑥 ∈ 𝐴. Let

𝜏𝐴 = inf{𝑛 ≥ 0 ; 𝑆𝑛 ∉ 𝐴} denote the exit time of 𝐴 and �̃�𝐵 = inf{𝑛 ≥ 1 ; 𝑆𝑛 ∈ 𝐵} denote the

hitting time of 𝐵 ⊆ 𝐴.

We will consider sets of paths quite frequently. For 𝑥, 𝑦 ∈ 𝐴, we write K𝐴 (𝑥, 𝑦) for the set

containing paths of the following form: 𝜔 = [ ®𝑒1, . . . , ®𝑒𝑛], where ®𝑒1 points away from 𝑥, ®𝑒𝑛 points

to 𝑦, and ®𝑒 𝑗 has both vertices in 𝐴 for any 2 ≤ 𝑗 ≤ 𝑛 − 1. We also define

K𝐴 =
⋃
𝑥∈𝐴

⋃
𝑦∈𝐴

K𝐴 (𝑥, 𝑦) and K𝐴 =
⋃
𝑥∈𝐴

⋃
𝑦∈𝐴

K𝐴 (𝑥, 𝑦). (1)

We will also encounter self-avoiding walks (SAW), which are paths that do not visit the same vertex

twice. For sets of SAWs, we use similar notations to sets of usual paths, replacing the letter K with

W instead, e.g. W𝐴 (𝑥, 𝑦).

Usually, we define Markov chains via their transition probabilities. For Markov chains on graphs,

a different perspective may be easier to work with. Given a directed edge ®𝑒 = (𝑥, 𝑦), we define a

weight on ®𝑒, given by 𝑝( ®𝑒) = 𝑝(𝑥, 𝑦). This induces a measure 𝑝 on sets of paths, e.g. K𝐴 (𝑥, 𝑦).

We will also study Markov chains on countably infinite graphs. Throughout this report, we will

use 𝑋 to denote a countably infinite vertex set. We say that an increasing sequence (𝐴𝑛)𝑛∈N of finite

sets is an exhaustion of 𝑋 if their union is 𝑋 . The standard example of these graphs is Z𝑑 . We recall

that the simple random walk is recurrent for 𝑑 = 1, 2 and transient for 𝑑 ≥ 3.

Potential Theory

The LERW is deeply related to potential theory on graphs. Analogous to the continuum, we have

the main objects: the Laplacian, Green’s function, and the Poisson kernel.
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Definition 1. Given a Markov chain 𝑆 with the transition matrix 𝑃, its Laplacian is the operator

Δ = 𝑃 − 𝐼. If 𝑓 is a function on 𝐴, we say that 𝑓 is harmonic if Δ 𝑓 = 0 on 𝐴.

The Green’s function 𝐺𝐴 (𝑥, 𝑦) killed upon exiting 𝐴 is the expected number of visits of the

chain started at 𝑥 to 𝑦 before exiting 𝐴, where 𝑥, 𝑦 ∈ 𝐴. It can be interpreted as an operator 𝐺𝐴.

The Poisson kernel is given by 𝐻𝐴 (𝑥, 𝑧) = P𝑥
{
𝑆𝜏𝐴 = 𝑧

}
, where 𝑥 ∈ 𝐴 and 𝑧 ∈ 𝜕𝐴.

The Laplacian and Green’s function satisfy the relationship Δ = −𝐺−1
𝐴

. Now, we will look at

the first application of taking 𝑝 as a measure on sets of paths.

Proposition 1 ([Law17, p.7, 9]). For any 𝑥, 𝑦 ∈ 𝐴 and 𝑧 ∈ 𝜕𝐴,

𝐺𝐴 (𝑥, 𝑦) = 𝑝 [K𝐴 (𝑥, 𝑦)] and 𝐻𝐴 (𝑥, 𝑧) = 𝑝 [K𝐴 (𝑥, 𝑧)] . (2)

We will also encounter functions which are harmonic on a finite subset which satisfy certain

boundary conditions. They are analogous to solutions to the Dirichlet problem in PDE theory and

are referred to by the same name. The following theorem gives an explicit solution to this problem

in terms of the Poisson kernel.

Theorem 1 ([Law22, Proposition 1.10]). Suppose 𝑃 is an irreducible transition matrix on 𝐴, and

let 𝐹 : 𝜕𝐴 → R be a bounded function. Then there exists a unique bounded function 𝑓 on 𝐴 that

is harmonic in 𝐴 and agrees with 𝐹 on 𝜕𝐴. It is given by

𝑓 (𝑥) = E𝑥
[
𝐹 (𝑆𝜏𝐴)

]
=

∑︁
𝑧∈𝜕𝐴

𝐻𝐴 (𝑥, 𝑧)𝐹 (𝑧). (3)

Loop-Erased Random Walks

Deterministic Paths

Definition 2. We define a deterministic procedure called (chronological) loop-erasure

LE : 𝜔 ∈ K𝐴 (𝑥, 𝑦) ↦→ 𝜂 ∈ W𝐴 (𝑥, 𝑦). (4)

It is given by the following:

1. Let 𝜔 = [𝜔0, . . . , 𝜔𝑛] ∈ K𝐴 (𝑥, 𝑦), 𝑗0 = sup {𝑘 ; 𝜔𝑘 = 𝜔0}, and 𝜂0 = 𝜔0 = 𝜔 𝑗0 .
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2. If 𝑗𝑖 < 𝑛, set 𝑗𝑖+1 = max
{
𝑘 ; 𝜔𝑘 = 𝜔 𝑗𝑖+1

}
, and 𝜂 𝑗+1 = 𝜔 𝑗𝑖+1(= 𝜔 𝑗𝑖+1). Recursively apply this

procedure until 𝑗𝑚 = 𝑛.

3. Set LE(𝜔) = 𝜂 = [𝜂0, . . . , 𝜂𝑚].

We study the properties of this procedure. Note that as a function, loop-erasure is not injective.

Let us examine some properties of LE−1(𝜂), the set of paths with loop-erasure 𝜂.

Definition 3. Given a weight 𝑝 on 𝐴, the loop-erased measure 𝑝 is a measure on W𝐴, given by

𝑝(𝜂) = 𝑝(LE−1(𝜂)) =
∑︁

𝜔∈K𝐴,LE(𝜔)=𝜂

𝑝(𝜔) (5)

The measure 𝑝 has a more explicit form in terms of Green’s functions and the usual measure 𝑝.

Proposition 2 ([Law17, Proposition 3.1]). If 𝜂 = [𝑥0, . . . , 𝑥𝑚] ∈ W𝐴, then

𝑝(𝜂) = 𝑝(𝜂)
𝑚∏
𝑗=0

𝐺𝐴 𝑗
(𝑥 𝑗 , 𝑥 𝑗 ), 𝐴 𝑗 = 𝐴 \

{
𝑥0, . . . , 𝑥 𝑗−1

}
. (6)

It is useful to think of the loop-erasure 𝜂 as a ‘backbone’, such that when it is combined with the

loops erased, we recover the original path. In this sense, the quantity
∏

𝐺𝐴 𝑗
(𝑥 𝑗 , 𝑥 𝑗 ) is the measure

of all possible combinations of loops which one can put on the SAW 𝜂. This quantity is so important

that we now generalise it and give it a notation.

Definition 4. Let 𝐵 = {𝑥1, . . . , 𝑥𝑛} ⊆ 𝐴. Then

𝐹𝐵 (𝐴) =
𝑛∏
𝑗=1

𝐺𝐴 𝑗
(𝑥 𝑗 , 𝑥 𝑗 ), 𝐴 𝑗 = 𝐴 \

{
𝑥0, . . . , 𝑥 𝑗−1

}
. (7)

If 𝐵 ⊄ 𝐴, we define 𝐹𝐵 (𝐴) = 𝐹𝐵∩𝐴 (𝐴). We also write 𝐹 (𝐴) = 𝐹𝐴 (𝐴).

It may be surprising to learn that the quantity 𝐹𝐵 (𝐴) is independent of the enumeration of 𝐵.

In particular, we have the identity 𝐹 (𝐴) = det𝐺𝐴 = 1/det(𝐼 − 𝑃).

Finite State Spaces

Definition 5. Let 𝐴 be finite, 𝜕𝐴 nonempty, and 𝑆 an irreducible Markov chain on 𝐴. Let 𝑥 ∈ 𝐴. The

LERW from 𝑥 to 𝜕𝐴 to is a probability measure 𝑝 on W𝐴 (𝑥, 𝜕𝐴), obtained by starting the Markov

chain at 𝑥, killing the chain upon leaving 𝐴, and erasing loops chronologically. More explicitly,

𝑝(𝜂) = P
{
LE( [𝑆0, . . . , 𝑆𝜏𝐴]) = 𝜂

}
. (8)
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This coincides with the loop-erased measure, giving the probability 𝑝(𝜂) = 𝑝(𝜂)𝐹𝜂 (𝐴).

Alternatively, we can define the non-Markovian process 𝑆 by 𝑆𝑛 = 𝑆𝑇𝑛 , stopped when reaching

the boundary, for random times 𝑇𝑛 defined by

𝑇0 = 0, 𝑇𝑛 = sup
{
𝑘 ≤ 𝜏𝐴 ; 𝑆𝑘 = 𝑆𝑇𝑛−1+1

}
. (9)

This is the LERW on the Markov chain 𝑆, from the starting point of 𝑆 to 𝜕𝐴. The trace of 𝑆 is indeed

loop-erasure of that of 𝑆. We are interested in the probability that 𝑆 starts with some 𝜂 ∈ W𝐴.

Proposition 3 ([Law17, Proposition 4.4]). Suppose 𝜂 = [𝑥0, . . . , 𝑥𝑛], for some 𝑥0, 𝑥𝑛 ∈ 𝐴. Then

P𝑥
{
[𝑆0, . . . , 𝑆𝑛] = 𝜂

}
= 𝑝(𝜂)𝐹𝜂 (𝐴)Es𝜂 (𝜂𝑘 ), (10)

where Es𝐵 (𝑥) = P𝑥 {𝑆𝑛 ∉ 𝐵 for all 1 ≤ 𝑛 ≤ 𝜏𝐴}, is the escape probability, for 𝐵 ⊆ 𝐴, 𝑥 ∈ 𝐴.

It is worthwhile to delve deeper into the probability Es𝐵 (𝑥). We also define

𝜙𝐵 (𝑥) = P𝑥 {𝑆𝑛 ∉ 𝐵 for all 0 ≤ 𝑛 ≤ 𝜏𝐴} ∀𝐵 ⊆ 𝐴, 𝑥 ∈ 𝐴. (11)

This is harmonic on 𝐴 \ 𝐵 and satisfies the boundary data given by 1𝜕𝐴 on 𝜕 (𝐴 \ 𝐵) = 𝜕𝐴 ∪ 𝐵. It

is the unique solution to this Dirichlet problem. The escape probability can be retrieved from this

by the following:

Es𝐵 (𝑥) =

𝜙𝐵 (𝑥) 𝑥 ∉ 𝐵,

Δ 𝜙𝐵 (𝑥) 𝑥 ∈ 𝐵.

(12)

The function 𝜙𝐵 is an object solely determined by the potential theory on 𝐴 given the weight 𝑝.

From the above proposition, we can obtain the ‘transition probabilities’ of 𝑆 as a non-Markovian

process.

P𝑥0
{
𝑆𝑛+1 = 𝑧 | [𝑆0, . . . , 𝑆𝑛] = 𝜂

}
=

𝑝(𝑥𝑛, 𝑧)𝜙𝜂 (𝑧)∑
𝑤∈X 𝑝(𝑥𝑛, 𝑤)𝜙𝜂 (𝑤)

. (13)

This is the ‘Laplacian random walk’ interpretation of the LERW, which is another characterisation.

It is named as such as each step is taken according to 𝜙𝜂, which is the solution to Laplace’s equation

Δ 𝜙𝜂 = 0.
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Transient Chains on Infinite State Spaces

Let 𝑆 denote an irreducible transient Markov chain on a countably infinite state space 𝑋 . It is easiest

to define the LERW by the process 𝑆 given by 𝑆𝑛 = 𝑆𝑇𝑛 , for random times 𝑇𝑛 defined by

𝑇0 = 0, 𝑇𝑛 = sup
{
𝑘 ∈ N0 ; 𝑆𝑘 = 𝑆𝑇𝑛−1+1

}
. (14)

By transience, the times 𝑇𝑛 are almost surely finite.

The LERW on transient chains also exhibits analogous properties to that in finite state spaces.

Although it is interesting in its own right, we will only use it as a tool for constructing uniform

spanning forests in this report.

Recurrent Chains

Let 𝑆 denote an irreducible recurrent Markov chain on a countably infinite state space 𝑋 . We

cannot define LERW on 𝑋 simply by erasing loops from the infinite path because 𝑆 visits any point

infinitely many times. We need to find an alternative definition. As we will see, it is only possible to

define the LERW for some recurrent chains. We now develop a certain property which is satisfied

by some Markov chains for which the LERW can be defined.

Let 𝑥0 ∈ 𝑋 and (𝐴𝑛)𝑛∈N an exhaustion of 𝑋 with 𝑥0 ∈ 𝐴0. Also let 𝜂 = [𝑥0, . . . , 𝑥𝑚] denote a

(finite) SAW in 𝑋 starting at 𝑥0. From the previous section, we would like to define

𝑝(𝜂) = lim
𝑛→∞

𝑝(𝜂)𝐹𝜂 (𝐴𝑛)Es𝐴𝑛
(𝑥𝑚). (15)

We investigate the existence of this limit. Recall the following:

𝐹𝜂 (𝐴𝑛) = 𝐺𝐴𝑛
(𝑥0, 𝑥0)

𝑚∏
𝑘=1

𝐺𝐴𝑛\{𝑥0,...,𝑥𝑘−1} (𝑥𝑘 , 𝑥𝑘 ) = 𝐺𝐴𝑛
(𝑥0, 𝑥0)𝐹𝜂 (𝐴𝑛 \ {𝑥0}). (16)

By recurrence, 𝐺𝐴𝑛
(𝑥0, 𝑥0) tends to infinity. However, for any 𝑦 ∈ 𝑋 , 𝐺𝐴𝑛\{𝑦} (𝑥0, 𝑥0) is finite.

Proposition 4. Let 𝑆 denote a Markov chain on a countably infinite state space 𝑋 . Then for any

𝑥, 𝑦 ∈ 𝑋 , 𝐺𝑋\{𝑦} (𝑥, 𝑥) is finite.

In particular, 𝐹𝜂 (𝐴𝑛 \ {𝑥0}) is finite. Hence, as 𝑛 tends to infinity, 𝐺𝐴𝑛
(𝑥0, 𝑥0) tends to infinity

and Es𝐴𝑛
(𝑥𝑚) tends to zero. Since 𝐹𝜂 (𝐴𝑛) = 𝐺𝐴𝑛

(𝑥0, 𝑥0)𝐹𝜂 (𝐴𝑛 \ {𝑥0}) ∼ 𝐺𝐴𝑛
(𝑥0, 𝑥0)𝐹𝜂 (X \ {𝑥0}),

we have

𝑝(𝜂) = 𝑝(𝜂)𝐹𝜂 (X \ {𝑥0})
[

lim
𝑛→+∞

𝐺𝐴𝑛
(𝑥0, 𝑥0)Es𝜂,𝐴𝑛

(𝑥𝑚)
]
, (17)
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if the limit exists.

We are ready to introduce Property A, which states that this limit always exists.

Definition 6. Let 𝑉 be a finite subset of 𝑋 and 𝑦 ∈ 𝑉 . Let 𝐴𝑛 denote an exhaustion of 𝑋 and 𝜙𝑛 the

function that is harmonic on 𝐴𝑛 \ 𝑉 , vanishes on 𝑉 , and takes value 1 on 𝑋 \ (𝐴𝑛 ∩ 𝑉). We define

the function

𝜙𝑉,𝑦 (𝑥) = lim
𝑛→∞

𝐺𝐴𝑛
(𝑦, 𝑦)𝜙𝑛 (𝑥). (18)

A Markov chain is said to satisfy Property A if 𝜙𝑉,𝑦 (𝑥) is well-defined, i.e. invariant under

change of 𝐴𝑛, vanishes on 𝑉 , and is harmonic on 𝑋 \𝑉 .

From the previous discussion, we also obtain the appropriate definition of the LERW.

Definition 7. For a recurrent irreducible Markov chain 𝑆 that satisfies Property A, we define the

infinite LERW starting at 𝑥0 by

P
{
[𝑆0, . . . , 𝑆𝑛] = 𝜂

}
= 𝑝(𝜂)𝐹𝜂 (𝑋 \ {𝑥0}) [Δ 𝜙𝜂,𝑥0 (𝑥𝑛)], (19)

where 𝜂 = [𝑥0, . . . , 𝑥𝑛].

It is possible to show that the simple random walk on Z does not satisfy Property A, while that

on Z2 does. This is the setting for Schramm’s celebrated paper [Sch00] on the scaling limits of the

LERW and the UST in the plane.

We could have defined the LERW on recurrent chains as the limits of the laws of LERWs

over exhaustions of 𝑋 . From the discussion, we see that Property A is guarantees the existence of

this limit through the convergence of 𝐺𝐴𝑛
(𝑦, 𝑦)𝜙𝑛 (𝑥). This approach is very explicit and allows us

to work quantitatively. More fundamentally, the existence of this limit can be characterised by a

topological feature of the associated uniform spanning tree, which we will expand on at the end of

this report.

Uniform Spanning Forests

We first consider uniform spanning forests on finite graphs. We enumerate 𝐴 = {𝑥0, 𝑥1, . . . , 𝑥𝑛}.

A spanning tree 𝑇 of 𝐴 (where 𝐴 is seen as a complete graph) is a collection of edges such that

the graph with vertex set 𝐴 and edges 𝑇 is connected and contains no cycles.
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Given a spanning tree 𝑇 and a vertex 𝑦 ∈ 𝐴, there exists a unique SAW 𝜂 ∈ W𝐴 (𝑦, 𝑥0) with

edges in 𝑇 . With this fact, it is easy to see that this defines an orientation of the tree by orienting

each SAW to towards the root 𝑥0. We define the weight of 𝑇 with respect to 𝜕𝐴 by

𝑝(𝑇 ; 𝑥0) =
∏
𝑒∈𝑇

𝑝( ®𝑒), (20)

where ®𝑒 is a directed edge with direction given by the orientation of the tree.

Definition 8. The uniform spanning tree (UST) on 𝐴 is a measure 𝜇𝐴 on the set 𝔗 of spanning

trees of 𝐴 given by

𝜇𝐴 (𝑇) =
𝑝(𝑇 ; 𝑥0)∑

𝑇∈𝔗 𝑝(𝑇 ; 𝑥0)
. (21)

Although it is named as such, we see from the definition that the UST is not necessarily the

‘uniform distribution’ on the set of spanning trees, except when 𝑝 comes from the simple random

walk. To see this, recall that for a tree 𝑇 , the sizes of the vertex set𝑉 = 𝐴 and edge set 𝐸 = 𝑇 satisfy

the relation |𝑉 | = |𝐸 | + 1. In this case, this shows 𝑝(𝑇 ; 𝑥0) = 𝑝 |𝐴|−1, which is constant.

Let us move to a slightly different setting. We consider the graph 𝐴 = 𝐴 ∪ 𝜕𝐴 with wired

boundary conditions by identifying all vertices in 𝜕𝐴 to become one point, which we denote by

𝜕𝐴. The edges that originally have endpoints at some 𝑧 ∈ 𝜕𝐴 now end in the vertex 𝜕𝐴. That is, we

are now working on the graph 𝐴 = 𝐴∪ {𝜕𝐴} and our trees are rooted at 𝜕𝐴 with weights 𝑝(𝑇 ; 𝜕𝐴).

The UST on 𝐴 is called the wired spanning forest (WSF) of 𝐴, although it is always a tree in 𝐴.

The WSF of 𝐴 restricts to 𝐴, by taking only edges with both endpoints in 𝐴. This gives us

the uniform spanning forest USF of the finite set 𝐴, which is truly a forest as it is disconnected

in general. It is important to note that the USF in this sense is neither uniform in the sense of a

uniform distribution, nor in the sense of being proportional to its weight as in the UST.

Wilson’s Algorithm

The UST and the LERW are closely related through Wilson’s algorithm, which is an algorithm to

generate spanning trees given instances of loop-erased random walks.

Definition 9. Given 𝐴,P, 𝑥0 ∈ 𝐴, we describe Wilson’s algorithm to generate a spanning tree of 𝐴.

1. Run a LERW in 𝐴 from 𝑥1 to 𝑥0. Let T1 denote the set of edges traversed by the LERW and

𝐴1 = 𝐴 \ T1.
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2. Recursively, if 𝐴𝑘 is empty, then we have a spanning tree T def
= T𝑘 . Stop.

3. Otherwise, let 𝑗 denote the smallest index with 𝑥 𝑗 ∉ 𝐴𝑘 . Run a LERW in 𝐴𝑘 from 𝑥 𝑗 to

T𝑘 . Add the edges traversed by the LERW to the tree T𝑘 to form a new tree T𝑘+1 and let

𝐴𝑘+1 = 𝐴𝑘 \ T𝑘+1, i.e. the vertices that are not yet connected to the tree.

We see that this algorithm terminates in at most 𝑛 steps, since at each step, at least one vertex

𝑥 𝑗 is added to 𝐴𝑘 . This algorithm generates spanning trees in the same distribution as the UST.

Theorem 2 ([Law17, Proposition 4.7]). Given 𝐴,P, 𝑥0 ∈ 𝐴, the probability that a particular

spanning tree T is generated in Wilson’s algorithm is 𝑝(T ; 𝑥0)𝐹 (𝐴).

When 𝐴 has wired boundary conditions, Wilson’s algorithm generates the WSF on 𝐴, a UST

rooted at {𝜕𝐴}. For an exhaustion (𝐴𝑛)𝑛∈N of Z𝑑 , we can consider the limit of the WSFs as 𝑛 tends

to infinity. The boundaries 𝜕𝐴𝑛 are pushed to infinity. Intuitively, this suggests that the limit of the

WSFs is a WSF rooted at infinity. While it is possible to make this limit precise, we will make use

of the LERW machinery which we have developed to generalise the WSF to the infinite graph Z𝑑

with the infinite Wilson’s algorithm.

Definition 10 (infinite Wilson’s algorithm). For 𝑑 ≥ 2, we define the uniform spanning forest

(USF) T = ∪∞
𝑘=1T̃𝑘 , where T̃𝑘 are given by the following:

1. Run the LERW 𝑆1 generated by the simple random walk 𝑆1 from 𝑥1 to infinity (recall that we

have a special LERW for 𝑑 = 2). We include all edges and vertices of 𝑆1 [0,∞) in the initial

tree T̃1.

2. Recursively, if 𝑥 𝑗 ∈ T̃𝑗−1, we set T̃𝑗 = T̃𝑗−1. If 𝑥 𝑗 is not already included in T̃𝑗−1, we run the

simple random walk 𝑆 𝑗 until it hits T̃𝑗−1, or until infinity if it does not. Then, we add the

edges and vertices of either the loop-erasure LE(𝑆 𝑗 [0, �̃�T̃𝑗−1
]), or the infinite SAW 𝑆 𝑗 [0,∞)

to the forest T̃𝑗−1 to form T̃𝑗 .

Is the USF truly a forest, or is it a tree? To examine the connectivity of the USF constructed

by the infinite Wilson’s algorithm, we need to consider the probability that a loop-erased random

walk and an independent simple random walk do not intersect.
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Proposition 5 ([Pem91, Lemma 3.1]). If 𝑆1, 𝑆2 are independent simple random walks starting at

𝑥, 𝑦 ∈ Z𝑑 respectively, then

P
{
𝑆1 [0,∞) ∩ 𝑆2 [1,∞) = ∅

} 
= 0 𝑑 ≤ 4,

> 0 𝑑 ≥ 5.
(22)

With this result, it is easy to show the following by considering Wilson’s algorithm.

Theorem 3 ([Law22, Proposition 5.31]). For 𝑑 = 2, 3, 4, the USF T is almost surely connected,

i.e. it is almost surely a tree. For 𝑑 ≥ 5, T almost surely has infinitely many components.

Reprise: LERW on Recurrent Chains

In this section, we reference [BLPS01].

We have defined the USF in Z𝑑 via the infinite Wilson’s algorithm, but this is not very

satisfactory as it relies on LERWs, which do not always exist for recurrent graphs. As we have

mentioned, it is possible to define the USF in general graphs by taking limits of WSFs over

exhaustions. It can also be shown that if the LERW exists, then the random spanning forest

generated by Wilson’s algorithm is indeed the USF.

For recurrent chains, it is obvious from Wilson’s algorithm that the USF is the UST. We now

define the topological notion of ends for spanning trees. An infinite SAW in a tree is called a ray.

Two rays are equivalent if they coincide on infinitely many vertices. An end is an equivalence class

of rays. Observe that once two equivalent rays coincide, they must follow the same path. If not, they

will separate and coincide at another point, creating a cycle, which cannot happen in a tree. In the

infinite Wilson’s algorithm on Z𝑑 , we saw that every spanning tree generated has an end generated

by the initial LERW. In fact, if the UST has only one end, then we can recover the LERW from it.

Theorem 4 ([BLPS01, Proposition 14.1]). Let 𝑋 denote an infinite graph, (𝐴𝑛)𝑛∈N an exhaustion

of 𝑋 , and 𝑆𝑜 a recurrent Markov chain on 𝑋 started at some point 𝑜 ∈ 𝐺. Let 𝜂𝑛 = [𝑆𝑜0 , . . . , 𝑆
𝑜
𝜏𝐴𝑛

].

If the UST T𝑋 has only one end a.s., then the law of the random path 𝜂𝑛 converges weakly to the

law of the unique ray from 𝑜 in T𝑋 .

In particular, this is true for any recurrent chain on a proper planar graph which has only finitely

many sides to each face, where a planar graph is proper if every bounded set in the plane contains

only finitely many edges and vertices.
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