The Loop-Erased Random Walk

Baining Zhang

Supervisor: Maximilian Nitzschner

This project aims to study the loop-erased random walk on general graphs,

with an emphasis on \mathbb{Z}^2 , as well as related topics such as uniform spanning trees

and loop soups. A key objective is to understand the scaling limit of loop-erased

random walks on \mathbb{Z}^2 and its relation to the Schramm-Loewner evolution. In this

report, we outline the main constructions, present some key ideas, and highlight

interesting results which emerge from studying the loop-erased random walk.

The loop-erased random walk (LERW) was first introduced by Lawler¹ to understand the self-

avoiding walk. Since then, it has been a major subject of interest, particularly due to its connections

with other objects, especially the uniform spanning tree² and the Schramm-Loewner evolution.³

Summary

Our main reference is *Topics in loop measures and the loop-erased walk* (2017)⁴ by Greg Lawler,

with a supplementary reference Random Explorations (2022)⁵ by the same author.

Let A and ∂A be finite vertex sets, where ∂A is understood to be the external boundary of A.

Let $\overline{A} = A \cup \partial A$. We also use $A, \partial A, \overline{A}$ to denote the complete graphs generated by these vertex

sets. We write $\mathcal{K}_A(x, y)$ for the set of paths from x to y in A, and $\overline{\mathcal{K}}_A$ for paths which can start and

end anywhere in \overline{A} , with all other vertices in A. Let S denote an irreducible Markov chain on \overline{A}

with transition probabilities p(x, y). We require p(z, z) = 1 for any $z \in \partial A$, effectively ending the

path as it leaves A.

1

The transition probabilities in \overline{A} induce a measure on paths in \overline{A} , given by

$$p(\omega) = \prod_{i=0}^{n-1} p(x_i, x_{i+1}), \text{ where } \omega = [x_0, \dots, x_n].$$
 (1)

This measure is equivalent to the Markov chain S. In particular, $\mathbf{P}^{x_0}\{[S_0, \dots, S_n] = \omega\} = p(\omega)$. The classical quantities in the theory of random walks: the Green's function G_A , and the Poisson kernel H_A , can be rewritten as measures of sets of paths:

$$G_A(x, y) = p[\mathcal{K}_A(x, y)], \quad \text{for} \quad x, y \in A,$$
 (2)

$$H_A(x,z) = p[\mathcal{K}_A(x,z)], \quad \text{for} \quad x \in A, z \in \partial A.$$
 (3)

In the following, we will set up an analogous correspondence between the loop-erased random walk and the loop-erased measure. We first look at erasing loops on deterministic paths.

Definition 1 A path $\omega = [\omega_0, ..., \omega_n]$ is called a self-avoiding walk (SAW) if all its vertices are distinct. We will write $\eta = [\eta_0, ..., \eta_m]$ for SAWs, and $W_A(x, y) = \{\omega \in \mathcal{K}_A(x, y) : \omega \text{ is a SAW}\}.$

Definition 2 We define a deterministic procedure called (chronological) loop erasure

$$LE: \omega \in \mathcal{K}_A(x, y) \mapsto \eta \in \mathcal{W}_A(x, y).$$
 (4)

It is given by the following:

- 1. Let $\omega = [\omega_0, \dots, \omega_n] \in \mathcal{K}_A(x, y)$, $j_0 = \sup\{k : \omega_k = \omega_0\}$, and $\eta_0 = \omega_0 = \omega_{j_0}$.
- 2. If $j_i < n$, set $j_{i+1} = \max \{k : \omega_k = \omega_{j_i+1}\}$, and $\eta_{j+1} = \omega_{j_i+1} (= \omega_{j_{i+1}})$. Recursively apply this procedure until $j_m = n$.
- 3. Set $LE(\omega) = \eta = [\eta_0, ..., \eta_m]$.

As a function, LE is surjective, but not injective. How do we understand the preimage $LE^{-1}(\omega)$? This is a recurring component in proofs of results regarding loop-erased (random) walks. We now demonstrate one of them.

With a measure p induced by a Markov chain, we can define the loop-erased measure \hat{p} on \overline{W}_A , given by

$$\hat{p}(\eta) = \sum_{\omega \in \overline{\mathcal{K}}_A: LE(\omega) = \eta} p(\omega). \tag{5}$$

The loop-erased measure \hat{p} has an explicit form in terms of Green's functions. Given some SAW $\eta = [\eta_0, \dots, \eta_m]$ and some path $\omega \in LE^{-1}(\eta)$, we have a unique decomposition

$$\omega = \ell_0 \oplus [\eta_0, \eta_1] \oplus \ell_1 \oplus [\eta_1, \eta_2] \oplus \cdots \oplus [\eta_{m-1}, \eta_m] \oplus \ell_m, \tag{6}$$

where $\ell_j \in \mathcal{K}_{A_j}(\eta_j, \eta_j)$ and $A_j = A \setminus \{\eta_0, \dots, \eta_{j-1}\}$. From this decomposition, we obtain

$$p(\omega) = p(\eta)p(\ell_0)\dots p(\ell_m). \tag{7}$$

Summing over all possible choices of the loops $\ell_0, \dots \ell_m$, we arrive at the desired expression.

$$\hat{p}(\eta) = p(\eta) \prod_{j=0}^{m} G_{A_j}(\eta_j, \eta_j). \tag{8}$$

It is perhaps surprising to learn that the quantity $\prod G_{A_j}(\eta_j, \eta_j)$ does not depend on the order of the elements $\{\eta_0, \dots, \eta_m\}$. From this observation, we can unambiguously define the quantity

$$F_B(A) = \prod_{j=1}^n G_{A_j}(x_j, x_j),$$
(9)

where *B* is some subset of *A* with any enumeration $B = \{x_0, \dots, x_n\}$, $A_j = A \setminus \{x_0, \dots, x_{j-1}\}$. This has a more fundamental description that sheds light on the independence of enumeration:

$$F_A(A) = \det G_A = \frac{-1}{\det \Delta_A}.$$
 (10)

We are now well equipped to understand the loop-erased random walk on a finite graph \overline{A} . The loop-erased random walk \hat{S} on the Markov chain S can be defined by starting S at some $x_0 \in A$ until it leaves A and then erasing loops. More explicitly, we write $\hat{S} = LE([S_0, \ldots, S_{\tau}])$, where τ is the time of first exit from A. This is a non-Markovian process on \overline{A} , which can also be realised as a probability measure on $W_A(x_0, \partial A)$:

$$\mathbf{P}^{x_0}\{\hat{S} = \eta\} = p(\eta)F_\eta(A) = \hat{p}(\eta) \quad \text{for} \quad \eta \in \mathcal{W}_A(x, z), z \in \partial A.$$
 (11)

Thus, we have characterised the loop-erased random walk by the loop-erased measure.

The loop-erased random walk is defined similarly for irreducible transient Markov chains on countable graphs. It can also be defined for a special class of recurrent chains, with the most prominent example being the symmetric simple random walk on \mathbb{Z}^2 . We will continue to study these processes with a view towards understanding the scaling limit of loop-erased random walks and uniform spanning trees in dimension 2.

References

- 1. Lawler GF. A self-avoiding random walk. Duke Mathematical Journal. 1980;47(3):655-693. doi:10.1215/S0012-7094-80-04741-9
- 2. Pemantle R. Choosing a Spanning Tree for the Integer Lattice Uniformly. The Annals of probability. 1991;19(4):1559-1574. doi:10.1214/aop/1176990223
- 3. Schramm O. Scaling limits of loop-erased random walks and uniform spanning trees. Israel Journal of Mathematics. 2000;118(1):221-288. doi:10.1007/BF02803524
- 4. Lawler GF. Topics in loop measures and the loop-erased walk. Published online 2017. https://arxiv.org/abs/1709.07531
- 5. Lawler GF. Random Explorations. American Mathematical Society; 2022.