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This project aims to study the loop-erased random walk on general graphs,

with an emphasis on Z2, as well as related topics such as uniform spanning trees

and loop soups. A key objective is to understand the scaling limit of loop-erased

random walks on Z2 and its relation to the Schramm-Loewner evolution. In this

report, we outline the main constructions, present some key ideas, and highlight

interesting results which emerge from studying the loop-erased random walk.

The loop-erased random walk (LERW) was first introduced by Lawler1 to understand the self-

avoiding walk. Since then, it has been a major subject of interest, particularly due to its connections

with other objects, especially the uniform spanning tree2 and the Schramm-Loewner evolution.3

Summary

Our main reference is Topics in loop measures and the loop-erased walk (2017)4 by Greg Lawler,

with a supplementary reference Random Explorations (2022)5 by the same author.

Let 𝐴 and 𝜕𝐴 be finite vertex sets, where 𝜕𝐴 is understood to be the external boundary of 𝐴.

Let 𝐴 = 𝐴 ∪ 𝜕𝐴. We also use 𝐴, 𝜕𝐴, 𝐴 to denote the complete graphs generated by these vertex

sets. We write K𝐴 (𝑥, 𝑦) for the set of paths from 𝑥 to 𝑦 in 𝐴, and K𝐴 for paths which can start and

end anywhere in 𝐴, with all other vertices in 𝐴 . Let 𝑆 denote an irreducible Markov chain on 𝐴

with transition probabilities 𝑝(𝑥, 𝑦). We require 𝑝(𝑧, 𝑧) = 1 for any 𝑧 ∈ 𝜕𝐴, effectively ending the

path as it leaves 𝐴.
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The transition probabilities in 𝐴 induce a measure on paths in 𝐴, given by

𝑝(𝜔) =
𝑛−1∏
𝑖=0

𝑝(𝑥𝑖, 𝑥𝑖+1), where 𝜔 = [𝑥0, . . . , 𝑥𝑛] . (1)

This measure is equivalent to the Markov chain 𝑆. In particular, P𝑥0{[𝑆0, . . . , 𝑆𝑛] = 𝜔} = 𝑝(𝜔).

The classical quantities in the theory of random walks: the Green’s function 𝐺𝐴, and the Poisson

kernel 𝐻𝐴, can be rewritten as measures of sets of paths:

𝐺𝐴 (𝑥, 𝑦) = 𝑝 [K𝐴 (𝑥, 𝑦)], for 𝑥, 𝑦 ∈ 𝐴, (2)

𝐻𝐴 (𝑥, 𝑧) = 𝑝 [K𝐴 (𝑥, 𝑧)], for 𝑥 ∈ 𝐴, 𝑧 ∈ 𝜕𝐴. (3)

In the following, we will set up an analogous correspondence between the loop-erased random

walk and the loop-erased measure. We first look at erasing loops on deterministic paths.

Definition 1 A path 𝜔 = [𝜔0, . . . , 𝜔𝑛] is called a self-avoiding walk (SAW) if all its vertices are

distinct. We will write 𝜂 = [𝜂0, . . . , 𝜂𝑚] for SAWs, and W𝐴 (𝑥, 𝑦) = {𝜔 ∈ K𝐴 (𝑥, 𝑦) : 𝜔 is a SAW}.

Definition 2 We define a deterministic procedure called (chronological) loop erasure

𝐿𝐸 : 𝜔 ∈ K𝐴 (𝑥, 𝑦) ↦→ 𝜂 ∈ W𝐴 (𝑥, 𝑦). (4)

It is given by the following:

1. Let 𝜔 = [𝜔0, . . . , 𝜔𝑛] ∈ K𝐴 (𝑥, 𝑦), 𝑗0 = sup {𝑘 : 𝜔𝑘 = 𝜔0}, and 𝜂0 = 𝜔0 = 𝜔 𝑗0 .

2. If 𝑗𝑖 < 𝑛, set 𝑗𝑖+1 = max
{
𝑘 : 𝜔𝑘 = 𝜔 𝑗𝑖+1

}
, and 𝜂 𝑗+1 = 𝜔 𝑗𝑖+1(= 𝜔 𝑗𝑖+1). Recursively apply this

procedure until 𝑗𝑚 = 𝑛.

3. Set 𝐿𝐸 (𝜔) = 𝜂 = [𝜂0, . . . , 𝜂𝑚].

As a function, 𝐿𝐸 is surjective, but not injective. How do we understand the preimage 𝐿𝐸−1(𝜔)?

This is a recurring component in proofs of results regarding loop-erased (random) walks. We now

demonstrate one of them.

With a measure 𝑝 induced by a Markov chain, we can define the loop-erased measure 𝑝 on

W𝐴, given by

𝑝(𝜂) =
∑︁

𝜔∈K𝐴:𝐿𝐸 (𝜔)=𝜂

𝑝(𝜔). (5)
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The loop-erased measure 𝑝 has an explicit form in terms of Green’s functions. Given some

SAW 𝜂 = [𝜂0, . . . , 𝜂𝑚] and some path 𝜔 ∈ 𝐿𝐸−1(𝜂), we have a unique decomposition

𝜔 = ℓ0 ⊕ [𝜂0, 𝜂1] ⊕ ℓ1 ⊕ [𝜂1, 𝜂2] ⊕ · · · ⊕ [𝜂𝑚−1, 𝜂𝑚] ⊕ ℓ𝑚, (6)

where ℓ 𝑗 ∈ K𝐴 𝑗
(𝜂 𝑗 , 𝜂 𝑗 ) and 𝐴 𝑗 = 𝐴 \

{
𝜂0, . . . , 𝜂 𝑗−1

}
. From this decomposition, we obtain

𝑝(𝜔) = 𝑝(𝜂)𝑝(ℓ0) . . . 𝑝(ℓ𝑚). (7)

Summing over all possible choices of the loops ℓ0, . . . ℓ𝑚, we arrive at the desired expression.

𝑝(𝜂) = 𝑝(𝜂)
𝑚∏
𝑗=0

𝐺𝐴 𝑗
(𝜂 𝑗 , 𝜂 𝑗 ). (8)

It is perhaps surprising to learn that the quantity
∏

𝐺𝐴 𝑗
(𝜂 𝑗 , 𝜂 𝑗 ) does not depend on the order

of the elements {𝜂0, . . . , 𝜂𝑚}. From this observation, we can unambiguously define the quantity

𝐹𝐵 (𝐴) =
𝑛∏
𝑗=1

𝐺𝐴 𝑗
(𝑥 𝑗 , 𝑥 𝑗 ), (9)

where 𝐵 is some subset of 𝐴 with any enumeration 𝐵 = {𝑥0, . . . 𝑥𝑛}, 𝐴 𝑗 = 𝐴 \ {𝑥0, . . . , 𝑥 𝑗−1}. This

has a more fundamental description that sheds light on the independence of enumeration:

𝐹𝐴 (𝐴) = det𝐺𝐴 =
−1

detΔ𝐴

. (10)

We are now well equipped to understand the loop-erased random walk on a finite graph 𝐴. The

loop-erased random walk 𝑆 on the Markov chain 𝑆 can be defined by starting 𝑆 at some 𝑥0 ∈ 𝐴

until it leaves 𝐴 and then erasing loops. More explicitly, we write 𝑆 = 𝐿𝐸 ( [𝑆0, . . . , 𝑆𝜏]), where 𝜏

is the time of first exit from 𝐴. This is a non-Markovian process on 𝐴, which can also be realised

as a probability measure on W𝐴 (𝑥0, 𝜕𝐴):

P𝑥0{𝑆 = 𝜂} = 𝑝(𝜂)𝐹𝜂 (𝐴) = 𝑝(𝜂) for 𝜂 ∈ W𝐴 (𝑥, 𝑧), 𝑧 ∈ 𝜕𝐴. (11)

Thus, we have characterised the loop-erased random walk by the loop-erased measure.

The loop-erased random walk is defined similarly for irreducible transient Markov chains on

countable graphs. It can also be defined for a special class of recurrent chains, with the most

prominent example being the symmetric simple random walk on Z2. We will continue to study

these processes with a view towards understanding the scaling limit of loop-erased random walks

and uniform spanning trees in dimension 2.
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