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1 Riemann Mapping Theorem

Let D denote the open unit disc at the origin. H is usually the upper half-plane {z ; Im z > 0}
unless otherwise specified. All ‘morphisms’ (e.g. automorphisms) are conformal.

1.1 Conformal radius

This section references [Bel20].
In the proof of the Riemann mapping theorem, we maximised f ′(z0) to so that ‘the function

grows fast enough to fill up the whole disc’. Consider an alternative extremal formulation.
Assume that Ω is a simply connected domain such that Ĉ \Ω contains at least two points. We
denote by F the family of all univalent maps on Ω with f (z0) = 0 and f ′(z0) = 1. Consider
the functional f 7→ sup |f (z)|. It is minimised by the unique (why?) univalent map onto the
disc of radius

R = min
f ∈F

sup
z∈D

|f (z)|.

This radius is called the conformal radius of the domain Ω at z0 and is denoted by ρ(z0,Ω).
We have an alternative definition of the conformal radius.

Proposition 1 (conformal radius). Let Ω be a simply connected domain. Then there exists a
unique univalent F : D → Ω with F (0) = z0 such that

F ′(0) = ρ(z0,Ω).

Proof. Take the Riemann map f̃ : Ω → D univalent with f̃ (z0) = 0 and f̃ ′(z0) > 0. Define
F = f̃ −1. Then F (0) = z0 and F ′(0) = 1/f̃ ′(z0). Recall that f̃ is the function that maximises
f̃ ′(z0) in {

f̃ univalent on Ω ; im f̃ ⊆ D, f̃ (z0) = 0, f̃ ′(z0) > 0
}
.

Hence, F is the function that minimises F ′(0). Consider the f in the previous discussion. We
have f = f̃ /f̃ ′(z0). Then im f = [1/f̃ ′(z0)]D. So

R =
1

f̃ ′(z0)
= F ′(0).

Uniqueness of F follows from that of f̃ from the RMT.

We don’t necessarily need the RMT normalisation to get F ′(0) > 0 to obtain the conformal
radius. We can equivalently define it as simply

ρ(z0,Ω) = |F ′(0)|

for any univalent F : D → Ω with F (0) = z0. This is well-defined because such F are
unique up to a precomposition of rotation of D, and hence G (z) = F (e iθz) has derivative
G ′(z) = e iθF ′(e iθz) so their moduli are equal.

Proposition 2. Given a simply connected domain Ω . Then the univalent map F : D → Ω
such that F (0) = z0 for a fixed z0 ∈ Ω is unique up to a rotation.
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Proof. We consider F−1
2 ◦ F1 ∈ Aut(D). This is an automorphism of the unit disc that fixes 0.

From the characterisation by Möbius transformations above, we see that F−1
2 ◦F1(z) = e iθz for

some θ ∈ R.

The conformal radius is strictly increasing: if Ω1 ⊆ Ω2, then ρ(z0,Ω1) ≤ ρ(z0,Ω2) where
equality holds if and only if Ω1 = Ω2. This is given by the following proposition.

Proposition 3 (Lindelöf’s principle). Let F1 : D → Ω1 and F2 : D → Ω2 be univalent maps
such that F1(0),F2(0) = z0 and Ω1 ⊆ Ω2. Then |F ′

1(0)| ≤ |F ′
2(0)| where equality holds if and

only if F2(z) = F1(e
iθz) for some θ ∈ R.

Proof. By precomposing F1 and F2 with a rotation, we may assume that F ′
1(0),F

′
2(0) > 0.

Define f1 = F−1
1 and f2 = F−1

2 . Then f1, f2 are the unique Riemann maps. Consider f2|Ω1
∈ F

that is, it is univalent on Ω1 with f2(Ω1) ⊆ D, f2(z0) = 0 and f2(z0) > 0. Recall that f1 is the
maximiser of f ∈ F 7→ f ′(z0), so we must have f ′1(z0) ≥ f ′2(z0) with equality holding if and
only if Ω1 = Ω2. From this inequality, we derive the equivalent F ′

1(0) ≤ F ′
2(0).

The equality condition follows by thinking more about precomposing with rotation.

We will see the conformal radius again.

1.2 Other Normalisations

Thermodynamic Normalisation The following refers to to [Bel20] and [Kem17]. [Law05]
also has a ‘proof’. Sometimes, this is also called the hydrodynamic normalisation.

Definition 1 (H-hull). A compact subset A ⊆ H∪R is a H-hull if H \A is a simply connected
domain and A ∩H = A.

Theorem 1. Let Ω+ = H \ A, where A is a H-hull. Then there is a unique univalent map
gA : Ω+ → H such that the following holds:

lim
z→∞

(gA(z)− z) = 0.

Equivalently, gA has the following expansion at ∞:

gA(z) = z + b1z
−1 + b2z

−2 + . . . .

Additionally, b1, b2, . . . are real.

gA are called mapping-out functions. As we will see later, the coefficient b1 is the half-plane
capacity of A.

Proof. Note that im gA = H and gA(∞) = ∞. RMT gives some univalent function g̃ : Ω+ → D.
We assume that g̃ can be continuously and injectively extended to R∩∂Ω+. Then g̃(∞) ∈ ∂D.

We need to do something to g̃ to make it more like gA. First, we define a Möbius transfor-
mation ϕ : D → H given by

z 7→ i − z

i + z
.
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Note that ϕ(−i) = ∞. We define another Möbius transformation ψ : Ĉ → Ĉ that is a rotation,
given by

z 7→ e i(−
π
2−arg(g̃(∞)))z .

Then we have ψ(g̃(∞)) = e i(−
π
2 ) = −i . Let g = ϕ ◦ ψ ◦ g̃ : Ω+ → H.

∞ ∈ ∂Ω+ g̃(∞) ∈ ∂D −i ∈ ∂D ∞ ∈ ∂Hg̃

g

ψ ϕ

g is univalent since all the maps in the composition are univalent. With the contin-
uous injective extension, and that g(∞) = ∞, there exists some Bchordal(∞, r) such that
g(Bchordal(∞, r) ∩ R) ⊆ R.

We want to expand g around ∞. But right now it is only defined on Bchordal(∞, r)∩H. We
extend it to all of Bchordal(∞, r) via the Schwarz reflection principle. Let Ω− = {z ; z ∈ Ω+},
Ω0 = ∂Ω+ ∩ R, and Ω = Ω+ ∪ Ω0 ∪ Ω−. g is extended to be an analytic function ĝ on Ω ,
given by

ĝ(z) =

{
g(z) z ∈ Ω+ ∪ Ω0,

g(z) z ∈ Ω−.

We see that ĝ is still injective, given the injective extension to R ∩ ∂Ω and univalence of g in
Ω+.

Therefore, ĝ has a simple pole at ∞, which means that its expansion at ∞ has the form

ĝ(z) = a1z + a0 + a−1z
−1 + a−2z

−2 + . . . .

We want to show that a1 ∈ R. On Bchordal(∞, r) ∩ R, ĝ is real and we have the following:

0 = lim
R∈R→∞

∣∣ĝ(R)− (a1R + a0 + a−1R
−1 + . . .

)∣∣,
= lim

R∈R→∞
|ĝ(R)− a1R |,

= lim
R∈R→∞

√
|ĝ(R)− Re a1R |2 + |Im a1R |2,

≥ lim
R∈R→∞

|Im a1R |.

Therefore, a1 must be real. Furthermore, since ĝ maps to the upper half-plane, a1 > 0.
Now we consider 1

a1
ĝ : Ω → H, which is still univalent and real-valued for r ∈ Bchordal(∞, r)∩

R with the following expansion at ∞:

1

a1
ĝ(r)− r︸ ︷︷ ︸

∈R

=
a0
a1

+
a−1

a0
r−1 + . . . ∈ R

From an argument similar to above, a0 ∈ R. In the same manner, we can show that aj ∈ R for
all j ≤ 0.

Finally, we define

gA(z) =
ĝ(z)− a0

a1
with the expansion at ∞

gA(z) = z + b1z
−1 + b2z

−2 + . . . ,
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where bj ∈ R. It is obviously univalent. We check that gA still maps to the upper half-plane.
We actually have gA = µ ◦ ĝ , where µ is the Möbius transformation given by

µ(z) =
z − a0
a1

,

which we observe to be an automorphism of the upper half-plane, by a1 > 0.
Now we show uniqueness. Let g1, g2 both satisfy our conditions. Then g1 ◦ g−1

2 is an
automorphism of the upper half-plane. Furthermore, it fixes ∞. This implies

g1 ◦ g−1
2 = αz + β ⇐⇒ g1(z) = g2(αz + β).

for some α > 0 and β ∈ R. We expand at ∞:

lim
z→∞

{[
z + a1z

−1 + a2z
−2 + . . .

]
−
[
(αz + β) + b1(αz + β)−1 + b2(αz + β)−2 + . . .

]}
= 0,

where we obtain α = 1, β = 0, and hence g1 ◦ g−1
2 = idH, i.e. g1 = g2.

Unbounded domains

Theorem 2. Let K ⊆ C be a compact set such that Ω = Ĉ \K is a simply connected domain.
We have ∞ ∈ Ω . There exists a unique univalent FK : D− → Ω such that FK (∞) = ∞ and
F ′
K (∞) > 0. Equivalently, the expansion of FK at ∞ has the form

FK (z) = a1z + a0 + a−1z
−1 + . . .

where a1 > 0.

Proof. We assume 0 ∈ K . If not, let z0 ∈ K , then 0 ∈ −z0 + K . We have FK (z) =
F−z0+K (z − z0), which satisfies our conditions if F−z0+K does. Hence, it suffices to prove the
theorem for K ∋ 0.

Let 1
Ω =

{
1
z ; z ∈ Ω

}
. Then 0 ∈ 1

Ω . RMT gives fK : D → 1
Ω such that fK (0) = 0 and

f ′K (0) > 0. Let FK (z) = 1/fK (1/z).

D− D 1
Ω Ω

1
z

FK

fK
1
z

FK is a composition of univalent functions, so it is univalent. We will now show that this
satisfies our normalisation conditions.

By injectivity, fK has a simple zero at 0. So its expansion at 0 has the form

fK (z) = z
(
f ′K (0) + b1z + b2z

2 + . . .
)
.

Hence,

FK (z) =
z

f ′K (0)
+ a0 + a−1z

−1 + . . . .

From this, we obtain FK (∞) = ∞, and F ′
K (∞) = 1

f ′K (0)
> 0.

The uniqueness of FK comes directly from the uniqueness of fK given by the RMT.
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2 Theory of Univalent Functions

2.1 Bieberbach-Koebe Theory

Definition 2.

S = {f univalent on D ; f (0) = 0, f ′(0) = 1} .
S∗ = {f univalent on D ; f (0) = 0, f ′(0) > 0} .
Σ =

{
g univalent on D− ; g(z) = z + b0 + b1z

−1 + . . .
}
.

Σ ′ = {g ∈ Σ ; 0 ∈ C \ g(D−)} .
A = {Ω ⊆ C ; Ω is simply connected and Ω ̸= C, ∅} .

Alternatively,

S =
{
f univalent on D ; f (z) = z + a2z

2 + a3z
3 + . . .

}
.

Definition 3. We define the Koebe function fKoebe : D → C, given by

fKoebe(z) = z + 2z2 + 3z3 + · · · =
∞∑
n=1

nzn.

Proof. We need to show that this series converges in D. But this is easy

1

lim sup n
√
n
= 1.

By absolute convergence, we have

fKoebe(z) =
z

(1− z)2
(in D).

This function is in S, but it is difficult to determine this from the definition.

Proposition 4. fKoebe ∈ S.

Proof. We can rewrite it as

fKoebe(z) =
1

4

(
1 + z

1− z

)2

− 1

4
.

D Hright C \ (−∞, 0] C \ (−∞, 14]
1+z
1−z z2

1
4z−

1
4

We see that it is a composition of univalent functions, so it is univalent.

This will be an important example which demonstrates that many of the theorems which
we are going to prove are indeed the best possible results.

We will present two theorems that relate geometric properties of univalent functions to their
analytic properties.
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Theorem 3 (Gronwall’s area theorem). Let g(z) = z+
∑∞

n=1 bnz
−n ∈ Σ ′. Then g(D−) = C\K

for some compact set K . Its area is given by

λ2(K ) = π

(
1−

∞∑
n=1

n|bn|2
)
.

Proof. If g can be extended continuously to ∂D, then we would directly apply Green’s theorem
to ∂D to compute the area. But this is might not be the case, and this problem is easy to
bypass anyway.

Let r > 1. We define Kr to be the region enclosed by g(r∂D). As r ↓ 1, we have
λ2(Kr) ↓ λ2(K ), which will give us the desired result.

We apply Green’s theorem

λ2(Kr) =
1

2i

∫
r∂D

w dw =
1

2i

∫
r∂D

g(z)g ′(z) dz ,

=
1

2i

∫
r∂D

(
z +

∞∑
n=0

bnz
−n

)(
1−

∞∑
n=1

nbnz
−n−1

)
dz .

Since this is quite tricky, we will do it here. Hopefully the argument is correct. Notice that on
r∂D, z = r2

z . We breakdown the sum.

λ2(Kr) =
1

2i

∫
r∂D

(
z − r 2

z

∞∑
n=1

nbnz
−n−1 +

∞∑
n=0

bn
zn

r 2n
−

( ∞∑
n=0

bn
zn

r 2n

)( ∞∑
n=1

nbnz
−n−1

))
dz .

1

2i

∫
r∂D

z dz = πr 2,

by Green’s theorem.
We move on to the next part.

1

2i

∫
r∂D

(
r 2

∞∑
n=1

nbnz
−n−2

)
dz = 0

The series converges on
{
z ; |z | ≥ r+1

2

}
, which contains r∂D. Its terms have degree ≤ −3

and hence the individual terms have primitives. So for any N ∈ N,∫
r∂D

(
N∑

n=1

nbnz
−n−2

)
= 0,

and ∣∣∣∣∣
∫
r∂D

( ∞∑
n=N+1

nbnz
−n−2

)
dz

∣∣∣∣∣ ≤
∞∑

n=N+1

n|bn|
r−n−2

→ 0 as N → ∞.

The third term is analytic. We can show that it converges on r 2D ⊋ rD by recalling that

1

lim supn→∞
n
√
|bn|

≥ 1,
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which gives us
1

lim supn→∞
n
√

|bn| · r−2n
≥ r 2.

Hence, the series is analytic on a simply connected domain r 2D containing r∂D. We apply
Cauchy’s theorem to get

1

2i

∫
r∂D

∞∑
n=0

bn
zn

r 2n
dz = 0.

Now for the final term, we note that in the product, only zn · z−n−1 can produce a nonzero
integral.

1

2i

∫
r∂D

( ∞∑
n=0

bn
zn

r 2n

)( ∞∑
n=1

nbnz
−n−1

)
dz

=
1

2i

∫
r∂D

(
· · ·+ c1z + c0 +

( ∞∑
n=1

n|bn|2r−2n

)
z−1 + c−2z

−2 + . . .

)
,

=
1

2i
2πi

∞∑
n=1

n|bn|2r−2n,

=π
∞∑
n=1

n|bn|2r−2n.

Of course, we need to show that everything we did is legitimate.

∞∑
n=0

bn
zn

r 2n

is absolutely convergent on r 2D.
∞∑
n=1

nbnz
−n−1 dz

is absolutely convergent on D−. So the series expansion in the second line is absolutely conver-
gent on the open annulus

{
z ; 1 < |z | < r 2

}
. We split it into three integrals.

Even though the whole series only converges on the annulus, the nonnegative power part is
still absolutely convergent on all of r 2D, so we again apply Cauchy’s theorem.∫

r∂D

∞∑
n=0

cnz
n dz = 0

The z−1 term is straightforward.∫
r∂D

( ∞∑
n=1

n|bn|2r−2n

)
z−1 dz = 2πi

∞∑
n=1

n|bn|2r−2n.

We argue as before to show that∫
r∂D

∞∑
n=2

c−nz
−n = 0.
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Finally, we combine the above and obtain

λ2(Kr) = π

(
r 2 −

∞∑
n=1

n|bn|2r−2n

)
.

We let r ↓ 1 and obtain the desired formula.

Lemma 1. If f ∈ S, then there is an odd function h ∈ S such that

[h(z)]2 = f (z2) z ∈ D.

Proof. Recall that f is injective, so it has a simple zero around 0 and z 7→ 1
z f (z) is analytic and

nonzero on all of D. Since D is a simply connected domain, this transformation has a square
root g , an analytic function, such that [g(z)]2 = 1

z f (z). We define h(z) = zg(z2). We see
that this is analytic and odd, with [h(z)]2 = f (z2), h(0) = 0, and h′(0) = 1. If h(z1) = h(z2),
f (z21 ) = f (z22 ), so z1 = ±z2. Hence, h(z2) = h(z1) = ±h(z2). So ± must be + and z1 = z2.
So h is univalent on D, i.e. h ∈ S.

Proposition 5 (Bieberbach). If f ∈ S, then |a2| ≤ 2. |a2| = 2 if and only if f = e iθfKoebe.

Proof. f has a series expansion on D

f (z) = z + a2z
2 + . . . .

For f , we have h provided by the above lemma. It also has a series expansion on D

h(z) = z + b2z
2 + . . . .

Recalling that [h(z)]2 = f (z2), we have

z2 + a2z
4 + · · · =

(
z + b2z

2 + b3z
3 . . .

)2
= z2 + 2b2z

3 + (2b3 + b2)z
4 + . . .

We see that b2 = 0, b3 =
a2
2 . So

h(z) = z
(
1 +

a2
2
z2 + . . .

)
in D.

Consider the function

g(z) =
1

h(1z )
=

z

1 + a2
2 z

−2 + . . .
= z − a2

2
z−1 + · · · ∈ Σ ′ on D−.

A corollary of the area theorem implies

|a2| ≤ 2.

It is easy to see that f = e iθfKoebe implies |a2| = 2. For the other direction, suppose |a2| = 2,

then for g defined above,
∑

n|bn| = |a2|
2 = 1, which means that a2

2 = e iθ for some θ ∈ R. So

g(z) = z − e iθz−1

9



by a corollary of the area theorem. From this, we also get

h(z) =
z

1− e iθz2
=⇒ f (z2) =

z2

(1− e iθz2)2
.

There is no weird square root thing going on here, we directly obtain

f (z) =
z

(1− e iθz)2
for z ∈ D.

So f (z) = e−iθfKoebe(e
iθz) for some θ ∈ R.

In fact, we have an extension of this theorem to all n.

Theorem 4 (de Branges’ Theorem, formerly Bieberbach’s Conjecture). If f ∈ S, then |an| ≤ n.

Notice how the rotations of the Koebe function show that the inequality is sharp. We will
continue to see this.

Theorem 5 (Koebe 1/4). If f ∈ S, then f (D) ⊇ 1
4D. If there exists some w ∈ 1

4∂D but
w /∈ f (D), then f is a rotation of the Koebe function.

Proof. We will show the contrapositive. Let w /∈ f (D). We want to show that w ̸⊆ 1
4D.

We define

ϕ(z) =
wf (z)

w − f (z)
.

This is the composition of a Möbius transformation with f , hence ϕ is univalent. Furthermore,
we have for z ∈ D

ϕ(z) =
wf (z)

w − f (z)
=

wz + wa2z
2 + . . .

w − z − a2z2 − . . .
= z +

(
a2 +

1

w

)
z2 + · · · ∈ S.

Bieberbach’s theorem implies ∣∣∣∣a2 + 1

w

∣∣∣∣ ≤ 2 and |a2| ≤ 2.

Hence, ∣∣∣∣ 1w
∣∣∣∣ ≤ |a2|+

∣∣∣∣a2 + 1

w

∣∣∣∣ ≥ 4,

which gives us the desired conclusion.
Suppose |w | = 1

4 . Then

2 ≥ |a2| ≥
∣∣∣∣ 1w
∣∣∣∣− ∣∣∣∣a2 + 1

w

∣∣∣∣ ≥ 2.

So |a2| = 2. Bieberbach’s theorem implies that f is the Koebe function.

Corollary 1. Let f : D → Ω be a function from S. Then d(0, ∂Ω) ∈ [1/4, 1].

10



Proof. We first show d(0, ∂Ω) ≤ 1. Suppose d(0, ∂Ω) = 1 + ε for some ε ≥ 0. Then
D ⊆ f (Ω). Consider f −1|D : D → D, where f −1(0) = 0 and (f −1)′(0) = 1 since f ∈ S. By
Schwarz’s lemma, f −1(z) = z for all z ∈ D. The Identity Theorem implies that f −1(z) = z for
all z ∈ Ω . Hence, f (z) = z . Then Ω = D and d(0, ∂Ω) = 1. So ε = 0 and d(0, ∂Ω) ≤ 1.

Since 1
4D ⊆ f (D) = Ω , d(0, ∂Ω) ≥ 1

4 .

We can generalise the Koebe 1/4 theorem to all f ∈ S∗. Through the bijection with simply
connected domains, this gives us a geometric result which relates the in-radius d(z0, ∂Ω) to the
conformal radius ρ(z0,Ω).

Corollary 2. Let Ω ∈ A be a simply connected domain which is not ∅ or C, and z0 ∈ Ω . Then

1 ≤ ρ(z0,Ω)

d(z0, ∂Ω)
≤ 4.

Proof. By translation, we can assume that z0 = 0. Let f̃ : D → Ω ∈ S∗ be the univalent
function corresponding to Ω ∈ A. Then

f (z) =
f̃ (z)

f ′(0)
∈ S.

Recall that f ′(0) = ρ(z0,Ω). We apply the previous corollary to F to get

1

4
≤ d(0, ∂[f̃ (D)]) ≤ 1,

1

4
≤ d(0, ∂Ω)

f ′(0)
≤ 1,

4 ≥ f ′(0)

d(0, ∂Ω)
≥ 1,

1 ≤ ρ(0,Ω)

d(0, ∂Ω)
≤ 4.

Theorem 6 (Koebe distortion). Let f : Ω → Ω ′ be a univalent map and z ∈ Ω . Then let
w = f (z) and

1

4
d (w , ∂Ω ′) ≤ |f ′(z)|d(z , ∂Ω) ≤ 4d (w , ∂Ω ′) .

Proof. We decompose f into h ◦ g−1 given by

Ω D Ω ′
g−1

f

h

with no particular normalisation. Let ζ = h−1(w) = g−1(z).

f ′(z) = h′(g−1(z))(g−1)′(z) =
h′(ζ)

g ′(ζ)
.

11



We apply the previous corollary and obtain

1 ≤ |h′(ζ)|
d(w , ∂Ω ′)

≤ 4,

1 ≥ d(z , ∂Ω)

|g ′(ζ)|
≥ 1

4
.

We multiply these two inequalities together and obtain

1

4
≤ d(z , ∂Ω)

d(w , ∂Ω ′)
|f ′(z)| ≤ 4

which leads to the desired result.

2.2 Capacity and Half-Plane Capacity

This section refers mostly to [Law05].

2.2.1 Capacity

Definition 4. A (compact) hull K is a compact connected subset of C larger than a single
point such that C \ K is connected.

Recall the ‘Unbounded domains’ normalisation for the RMT. We have shown that any
compact hull K has a unique univalent mapping FK : D− → Ĉ \ K with the expansion at ∞

FK (z) = a1z + a0 +
∞∑
n=1

a−nz
−n.

For compact hulls, we have a new notion of size given by this series expansion:

Definition 5. The (logarithmic) capacity cap(K ) is given by

cap(K ) = log a1 = log

[
lim
z→∞

FK (z)

z

]
.

By inspecting the expansion of FK , we see that for w ∈ C, and a > 0, we have

FK+w = FK and FaK = aFK .

Hence,
cap(K + w) = cap(K ) and cap(aK ) = cap(A) + log a.

We follow the notation of [Law05]. Let H∗ denote the set of hulls and H those containing
the origin. Let H∗

0 and H0 be sets of hulls in H∗ and H with zero capacity.
Let gK = F−1

K , fK (z) =
1

FK (1/z)
, so

f ′K (0) = e− cap(K ).

Hence, we see that fK ∈ S if and only if K ∈ H0. For any hull K , let rad(K ) = sup {|z | ; z ∈ K}.
Capacity is strictly monotonic.
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Proposition 6. If K1,K2 ∈ H, with K1 ⊆ K2, then cap(K1) ≤ cap(K2), where equality holds if
and only if K1 = K2.

Proof. Consider fK1
and fK2

. Then f −1
K1

◦ fK2
∈ Aut(D) and (f −1

K1
◦ fK2

)(0) = 0. By Schwarz’s

lemma
∣∣(f −1

K1
◦ fK2

)′(0)
∣∣ ≤ 1, which gives f ′K2

(0) ≤ f ′K1
(0) and hence cap(K1) ≤ cap(K2).

If cap(K1) = cap(K2), f
′
K2
(0) = f ′K1

(0). Then
∣∣(f −1

K1
◦ fK2

)′(0)
∣∣ = 1. By Schwarz’s lemma,

(f −1
K1

◦ fK2
)(z) = e iθz for some θ ∈ R. Taking derivative on both sides, we have

f ′K2
(0)

f ′K1
(0)

= e iθ.

But recall that f ′K1
(0), f ′K2

(0) > 0, so e iθ > 0. So e iθ = 1. Finally, we have (f −1
K1

◦ fK2
)(z) = z ,

i.e. fK1
= fK2

.

Example 1. For K = [−1, 1],

FK (z) =
1

2

(
z +

1

z

)
.

Proposition 7. If K ∈ H0, then 1 ≤ rad(K ) ≤ 4. Also, [−4, 0] ∈ H0.

2.2.2 Half-plane capacity

Let Q denote the set of compact H-hulls.

Definition 6. If A is a H-hull, the half-plane capacity, hcap(A), is defined by

hcap(A) = lim
z→∞

z [gA(z)− z ] .

Alternatively, we expand gA around ∞

gA(z) = z +
hcap(A)

z
+ O

(
1

|z |2

)
.

Similar to the case of compact hulls, if r > 0, x ∈ R, and A is a H-hull, then

grA(z) = rgA
(z
r

)
and gA+x(z) = gA(z − x) + x .

Hence,
hcap(rA) = r 2 hcap(A) and hcap(A+ x) = hcap(A).

We want to consider the additive properties of the half-plane capacity. Let A,B be disjoint
H-hulls. We consider their mapping-out functions. Let’s push A into R first. Consider gA(H \
(A ∪ B)) = gA((H \ A) \ B) = H \ gA(B) by injectivity. Now, we push the image of B under
gA into R by ggA(B). Therefore, we see that gA∪B = ggA(B) ◦ gA. Now, we expand this around
∞ to look into the coefficients and obtain the following relation:

hcap(A ∪ B) = hcap(A) + hcap(gA(B)).
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Example 2. For A = D ∩H,

gA(z) = z +
1

z
.

hcap(D) = 1
For A′ = (0, i ], then

gA′(z) =
√

z2 + 1 = z +
1

2z
+ . . . .

hcap((0, i ]) = 1
2 .

Proposition 8. hcap(A) is non-negative and zero if and only if A is empty.

Proof. This is a restatement of Lemma 4.2 in [Kem17] in a more geometric form. The original
statement is

The coefficient b1 is nonnegative and b1 = 0 only if gA is the identity map.

Since we have defined hcap(A) = b1, the first part is obvious. If gA is the identity map,
then it is a conformal automorphism of H. But recall that it is supposed to be a conformal
isomorphism of H \ A and H, so we can conclude that A = ∅.
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3 Loewner Evolutions

3.1 Local Growth and Loewner Chains

This theorem gives all necessary and sufficient condition to the existence of a continuous driving
term for gt . The condition is called local growth.

Theorem 7. Let (Kt)t∈[0,T ] be a growing family of hulls and gt the associated conformal maps.
Then following are equivalent:

� For all t ∈ [0,T ], hcap(Kt) = 2t and for any ε > 0 there is δ > 0 such that for each
t ∈ [0,T − δ], there exists a bounded connected set C ⊆ H \ K with diam(C ) < ε such
that C separates Kt+δ \ Kt from infinity in H \ Kt .

� There is a continuous W (t), t ∈ [0,T ] such that gt is the solution of the Loewner equation

∂tgt(z) =
2

gt(z)−Wt
.

Definition 7. A Loewner chain is the solution gt of the Loewner equation with a continuous
driving term.
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4 Brownian Motion

4.1 First Properties

Proposition 9 (scaling invariance, Lemma 1.7, [Mör+10]). Suppose (B(t))t≥0 is a standard
Brownian motion and let a > 0. Then the process (X (t))t≥0 defined by X (t) = 1

aB(a
2t) is also

a standard Brownian motion.

Proof. Continuity of paths, independence and stationarity of increments are obviously un-
changed.

Recall that B(t) are normally distributed. Observe that X (t + h) − X (t) = 1
a(B(a

2(t +

h))− B(a2t)) is normally distributed with mean 0 and variance 1
a2 (a

2(t + h)− a2t) = h.

4.2 Markov Property

This section refers entirely to [Mör+10]. Maybe you should go read [Mör+10] instead.

Theorem 8 (Markov property, Theorem 2.3, [Mör+10]). Suppose that (B(t))t≥0 is a Brownian
motion started in x ∈ Rd . Let s > 0, then the process (B(t+s)−B(s))t≥0 is again a Brownian
motion started in the origin and it is independent of the process (B(t))0≤t≤s .

Proof. It is easy to see that (B(t + s)− B(s))t≥0 has the distribution of a standard Brownian
motion.

The independence follows from the independence of the increments of the original Brownian
motion (Bt)t≥0 from Fs .

If we have a Brownian motion (B(t))t≥0, we have the natural filtration (F0(t))t≥0. We see
that the process (B(t + s)− B(s))t≥0 is independent of the σ-algebra F0(s). But actually, we
can show that it is independent of a slightly larger σ-algebra F+(s), given by

F+(s) =
⋂
t>s

F0(t).

This can be understood as having a infinitesimal glimpse into the future. Since it is a larger
filtration, Brownian motion is also adapted to it. Surprisingly, the Markov property also holds
for this filtration.

Theorem 9 (Theorem 2.5, [Mör+10]). For any s ≥ 0, the process (B(t + s)− B(s))t≥0 is
independent of the σ-algebra F+(s).

Proof. Let sn ↘ s,. Then F+(s) = ∩F0(sn). By continuity,

B(t + s)− B(s) = lim
n→∞

[B(t + sn)− B(sn)].

Each of the B(t + sn)− B(sn) is independent of F0(sn). Because sn is strictly decreasing, the
limit is independent of F0(sn) for all n ∈ N because you can just keep ignoring the first n − 1
terms of the sequence. Hence, B(t + s)− B(s) is independent of F+(s).
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This is a strictly larger σ-algebra. We shall illustrate this by considering the class of stopping
times defined on each filtration.

Let F be closed in Rd . Then H̃(F ) = inf {t ≥ 0 ; B(t) ∈ F}, the hitting time of F is a
stopping time with respect to (F0

t ) by the following:{
H̃(F ) ≤ t

}
=

∞⋂
n=1

⋃
s∈Q∩(0,t)

⋂
x∈Qd∩F

{
B(s) ∈ B(x ,

1

n
)

}
∈ F0(t).

If G ⊆ Rd is open, then H̃(G ) is a stopping time with respect to (F+(t))t≥0 but not
necessarily with respect to (F0(t))t≥0. We shall see this. By the continuity of BM, we have{

H̃(G ) ≤ t
}
=
⋂
s>t

{
H̃(G ) < s

}
=
⋂
s>t

⋂
r∈Q∩(0,s)

{B(r) ∈ G}

︸ ︷︷ ︸
∈F0(s)

∈ F+(t).

We now explain why it is not necessarily a stopping time with respect to (F0(t))t≥0. Suppose
G is bounded and the starting point of the BM is not in G . We fix the start of a sample path
γ : [0, t] → Rd with γ(0, t)∩G = ∅. If it goes into G immediately after γ(t), then H̃(G ) = t.
If not, i.e. it sort of rebounds off the boundary, then H̃(G ) ̸= t. But this obviously cannot be
decided by the information in F0(t).

Of course, you can say that H̃(G ) isn’t even the hitting time of G because B(H̃(G )) ∈ ∂G
but G is open so B(H̃(G )) /∈ G . Why should we want this to be a stopping time? But the
important thing is that you know that after H̃(G ), the BM will immediately go into G . And
we might really want to study these kinds of times. This is where the infinitesimal glimpse into
the future of (F+(t))t≥0 is at work.

So we see that unlike the extended filtration, the natural filtration is not really compatible
with the topology of Rd . We can phrase this more precisely.

Proposition 10. The filtration (F+
t )t≥0 is right-continuous, i.e.⋂
ε>0

F+(t + ε) = F+(t).

Proof. We note that⋂
ε>0

F+(t + ε) =
∞⋂
n=1

F+(t +
1

n
) =

∞⋂
n=1

∞⋂
k=1

F0(t +
1

n
+

1

k
) = F+(t).

The following proposition illustrates the technical advantage of right-continuous filtrations.

Proposition 11. Let (F(t))t≥0 denote a right-continuous filtration. Suppose the random time
T with values in [0, +∞] satisfies {T < t} ∈ F(t) for any t ≥ 0, then T is a stopping time
with respect to (F(t))t≥0.

Proof. We note that

{T ≤ t} =
∞⋂
k=1

{
T < t +

1

k

}
∈

∞⋂
n=1

F(t +
1

n
) = F(t),

where the last step is by right continuity.
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For any stopping time T , we define the σ-algebra

F+(T ) =
{
A ∈ F ; A ∩ {T ≤ t} ∈ F+(t)∀t ≥ 0

}
.

This is just the collection of events that happen before T . In particular, the path of the
BM before T , {B(t) ; t ≤ T} is F+(T )-measurable. And by right-continuity, we see that
{T ≤ t} = {T < t} for stopping times with respect to right-continuous filtrations.

We now prove the strong Markov property for stopping times.

Theorem 10 (strong Markov property, Theorem 2.16, [Mör+10]). For every a.s. finite stopping
time T , the process

{B(T + t)− B(T )}
is a standard Brownian motion independent of F+(T ).

Proof. We first define a sequence of stopping times

Tn = (m + 1)2−n for some m such that m · 2−n ≤ T < (m + 1)2−n

That is, we stop at the first time of the form k2−n after T . It is easy to see that Tn ↘ T
(recall that T is a.s. finite).

We write Bk = (Bk(t))t≥0 for BM defined by

B

(
t +

k

2n

)
− B

(
k

2n

)
.

We also write B∗ = (B∗(t))t≥0 for

B∗(t) = B(t + Tn)− B(Tn).

First, we want to show that B∗(t) is independent of FTn and then send n to infinity to retrieve
our desired result.

Let E ∈ F+(Tn). For every event {B∗ ∈ A}, we have

P({B∗ ∈ A}) =
∞∑
k=0

P
(
{Bk ∈ A} ∩ E ∩

{
Tn = k2−n

})
,

=
∞∑
k=0

P
(
E ∩

{
Tn = k2−n

})
.

In the first equality we are partitioning according to the value of Tn. The independence of
{Bk ∈ A} and E ∩ {Tn = k2−n} ∈ F+(k2−n) is by the Markov property with respect to the
filtration F+. Again by Markov property, we have P {Bk ∈ A} = P {B ∈ A} by the Markov
property. So we have

= P {B ∈ A}
∞∑
k=0

P
(
E ∩

{
Tn = k2−n

})
,

= P {B ∈ A}P(E ).
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We have shown that B∗ is independent of F+(Tn).
In particular, we also retrieve P {B∗ ∈ A} = P {B ∈ A} by setting E to be the whole sample

space. Hence we have also proved B∗ is a BM.
Now we push this result to T . Since Tn ↘ T , we know that {B(s + Tn)− B(Tn)}s≥0 is a

BM independent of F+(T ). We consider the increments of {B(t + T )− B(T )}

B(s + t + T )− B(t + T ) = lim
n→∞

B(s + t + Tn)− B(t + Tn).

The terms inside the limit are BM increments. Hence the limit is self are increments which
are independent and normally distributed with mean zero and variance s. This process is also
obviously a.s. continuous, so it is a BM. Moreover, all the increments and hence the process
itself are independent of F+(T ).
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5 Schramm-Loewner Evolutions

5.1 SLE as a Stochastic Loewner Chain

Let K denote the set of H-hulls, and L denote the set of increasing families of H-hulls of local
growth, parametrised by the half-plane capacity.

Definition 8 (Definition 5.1, [Kem17]). Let κ ≥ 0. A chordal SLE(κ) in H from 0 to ∞ is a
stochastic Loewner chain with a driving process (Wt)t≥0 = (

√
κB(t))t≥0, where (B(t))t≥0 is a

standard one-dimensional Brownian motion. More explicitly, an SLE(κ) is a L-valued process
(Kt)t≥0. We denote the measure associated to SLE(κ) by µ(H,0,∞).

Since gt and Kt are equivalent. We will also call (gt)t≥0 an SLE(κ), but we also call it the
Loewner flow.

We need to show that this process is actually well-defined.
Let’s set up the probability space. We work on the canonical space of the Brownian motion

(B(t))t≥0. The sample space is C [0, +∞). The σ-algebra F is generated by the projections
(πt(B))t≥0. We have the measure P of the law of B(t).

In fact, F is a Borel σ-algebra of a certain topology:

Proposition 12 (Theorem 21.31, [Kle20]). F = B(τ), where τ is the compact-open topology
on C [0,∞), i.e. topology of uniform convergence on compact subsets of [0,∞).

We now establish the continuity of the Loewner transform L : C ([0,∞),R),→ L, which
maps driving processes to their corresponding Loewner chains.

Note that L ⊆ C ([0,∞),K), on which the topology is that of the compact-open topology
induced by Carathéodory convergence on K. Recall that we have characterisations of the
Carathéodory convergence.

Proposition 13 (Theorem 3.19, [Bel20]). Let Ωn = H \ Kn and gn : H \ Kn → H. Then the
domains Ωn converges to Ω = H \K if and only if gn → g = gK uniformly on compact subsets
of H \ K .

Hence, it suffices to show the following.

Theorem 11 (Proposition 6.2, [Kem17]).

For any compact G ⊆ H, there exists a constant C such that: If (K
(1)
t )t≥0 and (K

(2)
t )t≥0 are

two Loewner chains such that K
(1)
T and K

(2)
T are subsets of H \ G , then

∥g1 − g2∥∞,[0,T ]×G ≤ C ∥W1 −W2∥∞,[0,T ] .

Proof. According to [Kem17], this directly follows from the lemma below.

Lemma 2 (Lemma 6.2, [Kem17]). For any δ > 0, T > 0, there exists C (T , δ) such that

|g1(T , z1)− g2(T , z2)| ≤ C (T , δ)(∥W1 −W2∥∞,[0,T ] + |z1 − z2|)

for any z1, z2 ∈ H such that Im gk(T , zk) > δ for k = 1, 2, where g1, g2 are solutions to the
Loewner equation with continuous driving terms (Wk(t))t∈[0,T ], k = 1, 2, resp.
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Proof. Let ψ(t) = g1(t, z1)− g2(t, z2). We want to bound |ψ(t)|.
We have

∂tψ(t) =
2

g1(t, z1)−W1(t)
− 2

g2(t, z2)−W2(t)
,

=
−2[(g2(t, z2)−W2(t))− (g1(t, z1)−W1(t))]

(g1(t, z1)−W1(t))(g2(t, z2)−W2(t))
,

= ζ(t)(ψ(t)− D(t)),

where

ζ(t) =
−2

(g1(t, z1)−W1(t))(g2(t, z2)−W2(t))
and D(t) = |W1(t)−W2(t)|.

We want solve for ψ(t) in terms of D(t) and ζ(t), then |ψ(t)| will become easier to bound
with |D(t)|. We write

∂t

(
e−

∫ t

0
ζ(s)dsψ(t)

)
= −ζ(t)e−

∫ t

0
ζ(s)dsD(t)

with the integrating factor. Hence, we have

e−
∫ t

0
ζ(s)dsψ(t)− ψ(0) = −

∫ t

0

ζ(u)e−
∫ u

0
ζ(s)dsD(u) du ,

ψ(t) = e
∫ t

0
ζ(s)dsψ(0)−

∫ t

0

ζ(u)e
∫ t

0
ζ(s)ds−

∫ u

0
ζ(s)dsD(u) du ,

= e
∫ t

0
ζ(s)ds |z1 − z2| −

∫ t

0

ζ(u)e
∫ t

u
ζ(s)dsD(u) du .

We have ∣∣∣∣∫ t

0

ζ(u)e
∫ t

u
ζ(s)dsD(u) du

∣∣∣∣ ≤ ∥D∥∞,[0,T ]

∫ t

0

|ζ(u)|e
∫ t

u
|ζ(s)|ds du ,

= ∥D∥∞,[0,T ]

(
−e

∫ t

u
|ζ|(s)ds

)∣∣∣t
0
,

= ∥D∥∞,[0,T ]

(
e
∫ t

0
|ζ(s)|ds − 1

)
.

It is quite clear now that our job is to bound e
∫ t

0
|ζ(s)|ds , which will gives us the following:

|ψ(t)| ≤ e
∫ t

0
|ζ(s)|ds |z1 − z2|+

(
e
∫ t

0
|ζ(s)|ds − 1

)
∥D∥∞,[0,T ] .

The Cauchy-Schwarz inequality gives∫ t

0

|ζ(s)| ds ≤
√

I1I2,

where

Ik =

∫ t

0

2 ds

|gk(s, zk)−Wk(s)|2
.
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Now, we will estimate Ik . Notice that

∂s

(
log

Im zk
Im gk(s, zk)

)
=
∂s

(
Im zk

Im gk(s,zk)

)
Im zk

Im gk(s,zk)

,

= Im gk(s, zk) ·
−1

[Im gk(s, zk)]2
[∂s Im gk(s, zk)],

=
−1

Im gk(s, zk)
[∂s Im gk(s, zk)].

From the Loewner equation, we have

∂s Re gk(s, zk) + i∂s Im gk(s, zk) =
2(gk(s, zk)−Wk(s))

|gk(s, zk)−Wk(s)|2
,

∂s Im gk(s, zk) =
−2 Im gk(s, zk)

|gk(s, zk)−Wk(s)|2
.

So

∂s

(
log

Im zk
Im gk(s, zk)

)
=

2

|gk(s, zk)−Wk(s)|
.

So we have

Ik =

∫ t

0

∂s

(
log

Im zk
Im gk(s, zk)

)
ds = log

Im zk
Im gk(s, zk)

.

Now we want to approximate Im zk . This calculation is similar to that in the proof of Proposition
4.1, [Kem17]. Notice that Wk(s) is always real, so the imaginary part of gk(s, zk) −Wk(s) is
the same as that of gk(s, zk). Hence, we have

∂s Im gk(t, zk) ≥
−2 Im gn(s, zn)

|Im gk(s, zk)|2
=

−2

Im gk(s, zk)
.

From this, with some creativity, we obtain

∂s
[
(Im gk(s, zk))

2
]
= 2 Im gk(s, zk)(∂s Im gk(s, zk)),

(Im gk(t, zk))
2 − (Im zk)

2 ≥
∫ t

0

2 Im gk(s, zk) · (−2)

Im gk(s, zk)
dt ,

= −4t,

Im zk ≤
√

Im gk(t, zk)2 + 4t.

This gives us the appropriate bound

Ik ≤ log

√
(Im gk(t, zk))2 + 4t

Im gk(t, zk)
.

Hence, we obtain that

e
∫ T

0
|ζ(s)|ds ≤

√
1 +

4T

δ2
.
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This is the C (T , δ) that we wanted and we have

|ψ(T )| = |g1(T , z1)− g2(T , z2)| ≤
√

1 +
4T

δ2

(
∥W1 −W2∥∞,[0,T ] + |z1 − z2|

)
.

So we see that the Loewner map is a function between two measurable spaces equipped
with Borel σ-algebras. By continuity, the Loewner map L : (Wt)t≥0 7→ (gt)t≥0 is measurable.
We have shown that our definition of SLE(κ) makes sense measure-theoretically.

The Loewner-Kufarev theorem is a even stronger statement, which in particular states that
the Loewner map L is a homeomorphism. See Theorem 8.5, [BN16].

5.2 First Properties

Consider κ = 0, then

∂tgt(z) =
2

gt(z)
, g0(z) = z .

This is not a stochastic object. In fact, this describes the Loewner flow

gt(z) =
√
z2 + 4t, [0, i · 2

√
t].

From now on, we shall assume that κ > 0.

Theorem 12 (Theorem 5.1, [Kem17]). Let (Kt)t≥0 be an SLE(κ) with κ > 0, and (Wt)t≥0

the corresponding driving process. Let (Wt)t≥0 be adapted to (Ft)t≥0. Then SLE(κ) satisfies
the following properties.

� Scale invariance: For any λ > 0, (λKt/λ2)t≥0
D
= (Kt)t≥0.

� Conformal Markov property: For any s ∈ R≥0, the family of hulls

(K̂s,t)t≥0 = (gs(Ks+t \ Ks)−Ws)t≥0

is independent of Fs and (K̂s,t)t≥0
D
= (Kt)t≥0.

� Strong conformal Markov property: For any a.s. finite stopping time τ wrt (Ft)t≥0, the
family of hulls

(K̂τ ,t)t≥0 = (gτ(Kτ+t \ Kτ)−Wτ)t≥0

is independent of Fτ and (K̂τ ,t)t≥0
D
= (Kt)t≥0.

Proof. Scale invariance We show that their respective mapping-out functions are identically
distributed. Recall that the mapping-out function for (λKt/λ2)t≥0 is

λgt/λ2(z/λ) = λg
( t

λ2
,
z

λ

)
.
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We rewrite the gs for clarity. If the driving function is identically distributed to W (t), then we
are done. Writing Wλ(t) for the corresponding driving function, the Loewner equation is

∂t

(
λg
( t

λ2
,
z

λ

))
=

2

λg
(

t
λ2 ,

z
λ

)
−Wλ(t)

, g(0, z) = z ,

1

λ
(∂tg)

( t

λ2
,
z

λ

)
=

2

λg
(

t
λ2 ,

z
λ

)
−Wλ(t)

,

(∂tg)
( t

λ2
,
z

λ

)
=

2

g
(

t
λ2 ,

z
λ

)
− 1

λWλ(t)
,

∂tg(t, z) =
2

g(t, z)− 1
λWλ(λ2t)

.

Hence, we see that

1

λ
Wλ(λ

2t)
D
= W (t) =

√
κB(t)

D
=

√
κ · 1

λ
B(λ2t),

by the scale invariance of Brownian motion. So we conclude that Wλ(t)
D
= W (t).

Conformal Markov property Given an SLE(κ), (Kt)t≥0, and some s ≥ 0, we define the
family of hulls

(K̂s,t)t≥0 = (gs(Ks+t \ Ks)−Ws)t≥0

which are associated with the following Loewner flow

(ĝs,t(z))t≥0 = (gs+t ◦ g−1
s (z +Ws)−Ws)

From the Loewner equation,

2

ĝs,t(z)− Ŵs,t

= ∂t ĝs,t(z),

= (∂tgs+t)(g
−1
s (z +Ws)),

=
2

gs+t ◦ g−1
s (z +Ws)−Ws+t

,

=
2

ĝs,t(z)− (Ws+t −Wt)
.

So we have Ŵs,t = Ws+t −Wt . Recalling the Markov property of Brownian motion, we have

Ŵt = Ws+t −Ws
D
= Wt

and that Ws+t − Ws is independent of Fs . Hence, we see that (K̂s,t)t≥0
D
= (Kt)t≥0 and is

independent of Fs .
Strong conformal Markov property The exact same, replacing s with τ and using the

strong Markov property of Brownian motion instead of the usual Markov property.

In fact, scale invariance and conformal Markov property characterises SLEs. Here, we provide
a proof for the converse of the above theorem, without the strong conformal Markov property.
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Theorem 13 (Theorem 9.1, [BN16]; Section 5.1.1, [Kem17]). If (Kt)t≥0 is a L-valued random
variable which satisfies the scale invariance and conformal Markov property, then it is SLE(κ)
for some κ > 0.

Proof. Fix s ≥ 0. Define K̂t = gs(Ks+t) − Ws for all t ≥ 0. The conformal Markov prop-

erty implies that (K̂t)t≥0 is distributed identically with (Kt)t≥0, and independent of Fs . The
calculation involving ĝs,t above gives

Ŵs,t = Ws+t −Ws .

Since (K̂t)t≥0 is independent of Fs by the conformal Markov property, (Ws+t − Ws)t≥0 is
independent of Fs and is distributed as (Wt)t≥0. So (Wt)t≥0 has independent and stationary
increments. The Lévy-Khintchine Theorem implies that (Wt)t≥0 is a Brownian motion with
linear drift. That is, we have

Wt = KB(t) + αt

for some K > 0, α ∈ R. Let κ = K 2. We want to show that α = 0.
We need scale invariance for this. Let λ > 0 and consider (λKt/λ2)t≥0. Scale invariance

says that (W λ
t )t≥0 is distributed identically to (Wt)t≥0. By a similar calculation as in the proof

of the previous theorem, we have

W
(λ)
t = λWt/λ2.

So we have

λ
√
κB
( t

λ2

)
+ α

t

λ2
D
=

√
κB(t) + αt,

√
κB(t) + α

t

λ2
D
=

√
κB(t) + αt.

This holds for all λ. Hence, α = 0.

What is the general shape of SLE? This question will be touched upon more extensively
when we are discussing its phases. However, based off the continuity of Brownian motion and
hence that of the driving process, we note that as a stochastic Loewner chain, its instances must
be of local growth. As we have seen before, hulls of local growth do not necessarily correspond
to hulls that are generated by a curve (Figure 4.4(c), [Kem17]). However, we imagined the SLE
to be a sort of random curve. How do we resolve this? Can we prove that the instances must
be generated by a curve?

Theorem 14 (Rohde-Schramm, Lawler-Schramm-Werner; Theorem 9.2, [BN16]; Theorem 5.2,
[Kem17]). Let (Kt)t≥0 denote some SLE(κ) with κ ≥ 0. We write (gt)t≥0 and (Wt)t≥0 for the
corresponding Loewner flow and driving process. The map g−1

t : H → Ht extends continuously
to H for all t ≥ 0, almost surely. Moreover, if we set γt = g−1

t (Wt), then (γt)t≥0 is continuous
and generates (Kt)t≥0, almost surely.

We recall the shape of curves which generate families of hulls of local growth. The are
self-intersecting but not self-crossing. Again refer to Figure 4.4, [Kem17].

We denote the pushforward measure of the SLE(κ) on the upper half-plane from 0 to
∞, which we have just defined, by µ(H,0,∞). We now extend this to all two-pointed domains
(U , a, b): a simply connected domain U with two distinguished boundary points a ̸= b.
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Definition 9 (Definition 5.2, [Kem17]). Let (Kt)t≥0 be a chordal SLE(κ) and (U , a, b) a two-
pointed domain. We define the chordal SLE(κ) in U from a to b to be the image of (Kt)t≥0

under any conformal onto map ϕ : H → U with ϕ(0) = a and ϕ(∞) = b. The corresponding
measure is defined by µ(U,a,b) = µ(H,0,∞) ◦ ϕ−1.

Obviously, this is not well-defined if we say ‘for any conformal onto map’. ϕ is not unique, and
each ϕ incurs a time-change. Recall how µ(H,0,∞) is defined for (Kt)t≥0 which are parametrised
by the half-plane capacity. But this situation is not that bad. We notice that ϕ is unique only
up to a linear time change. We can show this. Let ϕ,ψ : H → U be conformal isomorphisms
such that ϕ(0) = ψ(0) = a,ϕ(∞) = ψ(∞) = b. Then we note that ϕ ◦ ψ−1 ∈ Aut(H) fixing
0 and ∞. Then it is a simple calculation to show that ϕ ◦ ψ−1(z) = cz for some c > 0.

What we can do is to pick a specific ϕ, called a scale of the SLE(κ) in U . Alternatively, we
can just consider SLE(κ) in other simply connected domains to be a measure on the traces of
curves.

We have previously parametrised by half-plane capacity. Why couldn’t we do that now?
Well, we are not in the upper half-plane, so it is not applicable. To fix this, we can use a
different parametrisation by an intrinsic quantity that is conformally invariant under domain
change: the Minkowski content. This is known as the natural parametrisation. See Lawler’s
upcoming book on SLE mentioned in the appendix.
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6 Appendix

6.1 Online Materials

Courseware

� Course webpage for Curtis McMullen’s From Conformal Invariants to Percolation. Accom-
panied by lecture videos on YouTube. The channel name is Koebe 1/4! https://people.
math.harvard.edu/~ctm/home/text/class/harvard/219/21/html/index.html

� Jason Miller’s course webpage for a Part III course on SLE at Cambridge. It appears
to provide a minimal path to SLEs with only 46 pages (obviously with very few details).
https://www.dpmms.cam.ac.uk/~jpm205/teaching/lent2019/index.html

� Notes on SLE by Nathanaël Berestycki (joint with James Norris). https://homepage.

univie.ac.at/nathanael.berestycki/wp-content/uploads/2023/08/SLEvienna.pdf

� Norris’s page for the notes and example sheets (exercises). This is an older version com-
pared to the notes on Berestycki’s page. https://www.statslab.cam.ac.uk/~james/

Lectures/

� Apparently Lawler has another upcoming book on SLEs. https://www.math.uchicago.
edu/~lawler/bookmaster.pdf

Other things

� Includes visualisations of some conformal automorphisms of the sphere. https://www.

youtube.com/watch?v=1SiN9ttjgOE

� Schramm-Loewner evolution, SLE(4), and its Loewner flow., a visualisation of the action
of the mapping out functions following SLE4. https://www.youtube.com/watch?v=

NkdlqW1hmlY
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